تعاريف عمومي و متداول در منابع تغذيه و بخصوص منابع تغذيه سوئيچينگ



كليه مدارات الكترونيكي نياز به منبع تغذيه دارند. براي مدارات با كاربرد كم قدرت از باطري يا سلولهاي خورشيدي استفاده مي شود. منبع تغذيه به عنوان منبع انرژي دهنده به مدار مورد استفاده قرار مي گيرد.

حدود 20 سال است كه سيستمهاي پر قدرت جاي خود را حتي در مصارف خانگي هم باز كرده اند و اين به دليل معرفي سيستمهاي جديد براي تغذيه مدارات قدرت است.

اين منابع تغذيه كاملاً خطي عمل مي نمايند. اين نوع منابع را منابع تغذيه سوئيچينگ مي نامند. اين اسم از نوع عملكرد اين سيستمها گرفته شده است. به اين منابع تغذيه اختصاراً SMPS نيز مي گويند. اين حروف بر گرفته شده از نام لاتين Switched Mode Power Supplies است.

راندمان SMPS بصورت نوعي بين 80% الي 90% است كه 30% تا 40% آنها در نواحي خطي كار مي كنند. خنك كننده هاي بزرگ كه منابع تغذيه رگوله قديمي از آنها استفاده مي كردند، درSMPSها ديگر به چشم نمي خورند و اين باعث شده كه از اين منابع تغذيه بتوان در توانهاي خيلي بالا نيز استفاده كرد.

در فركانسهاي بالاي كليدزني از يک ترانزيستور جهت كنترل سطح ولتاژ DC استفاده مي شود. با بالا رفتن فركانس ترانزيستور، ديگر خطي عمل نمي كند و نويز مخابراتي شديدي را با توان بالا توليد مي نمايد. به همين سبب در فركانس كليد زني بالا از المان كم مصرف Power MOSFET استفاده مي شود. اما با بالا رفتن قدرت، تلفات آن نيز زياد مي شود. المان جديدي به بازار آمده كه تمامي مزاياي دو قطعة فوق را در خود جمع آوري نموده است و ديگر معايب BJT و Power MOSFET را ندارد. اين قطعة جديد IGBT نام دارد. در طي سالهاي اخير به دليل ارزاني و مزاياي اين قطعه از IGBT استفادة زيادي شده است.

امروزه مداراتي كه طراحي مي شوند، در رنج فركانسي MHZ و قدرتهاي در حد MVA و با قيمت خيلي كمتر از انواع قديمي خود مي باشند.

فروشنده هاي اروپائي در سال 1990 ميلادي تا حد 2 ميليارد دلار از فروش اين SMPSها درآمد خالص كسب نمودند. 80% از SMPSهاي فروخته شده در اروپا طراحي شدند و توسط كارخانه هاي اروپائي ساخت آنها صورت پذيرفت. درآمد فوق العاده بالاي فروش اين SMPSها در سال 1990 باعث گرديدكه شاخة جديدي در مهندسي برق ايجاد شود، اين رشته مهندسي طراحي منابع تغذيه سوئيچينگ نام گرفت.


یک مهندس طراح منابع تغذيه سوئيچينگ بايستي كه در كليه شاخه هاي زير تجربه و مهارت کافي كسب كند و هميشه اطلاعات بروز شده در موارد زير داشته باشد:
1- طراحي مدارات سوئيچينگ الكترونيك قدرت.
2- طراحي قطعات مختلف الكترونيك قدرت.
3- فهم عميقي از نظريه هاي كنترلي و كاربرد آنها در SMPSها داشته باشد.
4- اصول طراحي را با در نظر گرفتن سازگاري ميدانهاي الكترومغناطيسي منابع تغذيه سوئيچينگ با محيط انجام دهد.
5- درك صحيح از دفع حرارت دروني (انتقال حرارت به محيط) و طراحي مدارات خنك كنندة مؤثر با راندمان زياد.
و …
دراين کتاب نيز سعي بر اين است كه طبق اصول نوين مهندسي طراحي منابع تغذيه سوئيچينگ كليه اطلاعات مورد نياز در اختيار خواننده قرار گيرد.



1.2. تعاريف عمومي در SMPSها
هر سيستم طراحي شده به طور طبيعي وابسته به منبع تغذية خود مي باشد. يعني اولين پارامتر در طراحي مدار نوع منبع تغذيه و مقادير وابسته به آن است. يكي از مباحث مهم در طراحي SMPS ها، سنگين وزن بودن و گراني آن است، كه كليه اينها در يك منبع تغذيه از نوع SMPS به صورت دستگاه ارزان قيمت، سبك و كوچك تعريف خواهد شد.
وقتي كه طراح سيستم شروع طراحي مي كند، اولين تعريفي را كه در نظر خود مجسم مي كند، مقدار ولتاژ و جـريان ماكزيمم در SMPS است. بنابراين نسبت ولتاژ و جريان تعيين كننده انتخاب قطعات مورد نياز براي طراحي است.



مقدار ولتاژ خروجي:
عموماً در بيشتر مدارات منطقي ولتاژ 5v مورد نياز مي باشد، اما در بعضي موارد نياز به 5v- هم مي باشد. در كامپيوترها براي ايجاد گشتاور در موتورهاي متنوع به كار رفته در درايوهاي مختلف مانند موتورهاي CPU FAN ,CD ROM, F.D.D , H.D.D و ... نياز به ولتاژهاي +12v ,-12v مي باشد. در مصارف كنترل صنعتي جهت اعمال فرمان تحريك قطع و وصل در شيرهاي برقي و رله هاي كنتاكتوري از طريق پورتهاي PLC ولتاژ اعمالي به سيستمهاي تحت كنترل داراي سطوح ولتاژي +24v ,-24v است. در اتومبيلهاي برقي، تركشن و HVDC به سطح ولتاژ بالاتري احتياج است.



مقدار جريان:
در هر خروجي مي بايست ماكزيمم جريان مصرفي در حالت پايداري مشخص شود. هر سيستم الكتريكي در روي بدنه خود پلاكي دارد كه در آن تمام مقادير نامي و مجاز مورد نياز دستگاه از طرف كارخانه سازنده باتوجه به مشخصات طراحي و تستهاي متعددي كه بر روي دستگاه انجام شده است، مشخص مي باشد. براي مثال در ديسك درايوها مقدار جريان راه اندازي و حالت پايداري مشخص مي باشد و طراح منبع تغذيه بايستي حد مجاز جريان خروجي را بالاتر از جريان راه اندازي و حالت پايداري تعيين نمايد. حتي در بعضي از مواقع سازنده دياگرامهايي را همراه با دستگاه قرار مي دهد كه كمك بيشتري به طراح مي كند.
ولتاژ ورودي:
ولتاژ ورودي مي تواند از نوع AC يا DC و با رنج تغييرات مشخصي باشد. طراح حتماً بايد به نوع ورودي و عملياتي كه مي بايد روي آن انجام دهد تا خروجي مطلوبي بدست آورد را همواره در نظر بگيرد. معمولاً فرکانس، دامنه و شکل موج ولتاژ ورودي در طراحي خيلي مهم است. همچنين نوع شبکه اي که تغذيه ورودي را بر عهده دارد مهم است. معمولاً در محيطهاي صنعتي مانند کارخانجاتي که شبکه در شرايط سخت جهت تامين انرژي قوص الکتريکي و … کار مي کند شکل موج ولتاژ و جريان ورودي غير قابل پيش بيني است و بايد با استفاده از سيستمهاي جبرانساز شکل موجهای شبکه را تا حد قابل قبولي اصلاح کرد.



ايزولاسيون:
در بسياري از كاربردها ايزولاسيون الكتريكي بين ورودي ها و خروجي هاي مدارات احتياج مي باشد، وحتي در بسياري از موارد ايزولاسيون بين خروجي دستگاه با ورودي دستگاه ديگر نيز مورد نياز است و طراح ملزم به انديشيدن تدابيري خاص جهت برآورده سازی اين امر مي باشد.
ايزولاسيون الكتريكي اغلب توسط ترانسفورماتور در منابع تغذيه ايجاد مي شود كه استفاده از ترانسفورماتور باعث حجيم شدن منبع تغذيه مي شود. در مصارفي كه نياز به حجم كوچك مي باشد، مانند ماهواره ها، كامپيوترها، شارژرهاي باطري موبايل و تلفن و همچنين در منبع تغذيه مورد استفاده در پرينترها و دستگاه هاي كوچك كه اجبار در كوچك ساختن آنها مي باشد نظير دوربينهاي عكاسي ديجيتالي و دوربينهاي فيلم برداري و لوازم نظامي استراق سمع و جاسوسي و بمبها و موشكهاي دوربرد ناچاراً بايد از ايزولاسيون به وسيله ترانسفورماتور چشمپوشي كرد و به فكر چارة ديگري براي تحقق بخشيدن به اين امر بود يا اينكه توسط مدارات فيدبك عمل تثبيت خروجي را در صورت وجود تغيير يا اغتشاش در ورودي را انجام داد تا از مدارات در مقابل صدمه ديدن و معيوب شدن حفاظت شود و يا اينكه بايست از ايزولاسيون تا حدودي يا کلاً صرف نظر نمود.
ريپل در خروجي:
طبيعتاً مقداري نوسان در خروجي DC منابع تغذيه وجود دارد. به مقدار دامنه پيك تا پيك اين نوسانات ريپل مي گويند. هر خروجي كه داراي ريپل باشد، حتماً داراي تعدادي هارمونيك بغير از فرکانس صفر هرتز است. به همين خاطر اغلب مقدار خروجي را به جاي معرفي با مقدار DC آنرا با مقدارrms نشان مي دهند. هر چه مقدار نسبت ثابت ريپل به مقدار DC كوچكتر باشد بهتر است. اين نسبتِ در صديِ ريپل را مي توان با استفاده از فيلتر پايين گذر متشكل از سلف و خازن و يا افزايش فركانس ورودي و كليدزني با سرعت زياد تا حد قابل ملاحظه اي كاهش داد.
رگولاسيون:
ولتاژ خروجي در يك منبع تغذيه متأثر از عواملي مي باشد كه اين عوامل عبارتند از:
الف) تغييرات در ولتاژ ورودي.
ب ) تغييرات در جريان بار.
ج ) تغييرات در درجه حرارت محيط.
يك منبع تغذية رگوله معمولاً داراي مدارات فيدبك براي جبران اين تغييرات و اصلاح آنها و محدود كردن اين تغييرات در ناحية قابل قبولي مي باشد. اين فيدبك ها ممكن است عمل رگولاسيون را به صور (1)رگولاسيون خط، (2)رگولاسيون بار، (3)رگولاسيون حرارتي، انجام دهد.
پاسخ حالت گذرايي:
پاسخ به تغييرات ناگهاني و گذراي جريان بار يكي از پارامترهاي مهم در هر منبع تغذيه اي است. در حالت بار كامل در صورتي كه جريان بطور وصل شدن ناگهاني كليد در بار جاري شود، حتي در صورتي كه بار متصل به ترمينال خروجي جريان كمي را از منبع تغذيه دريافت كند، ولتاژ خروجي ناگهان مي افتد و از ولتاژ حالت بي باري كمتر مي شود و سپس توسط رگولاسيون به يك حد پايدار خواهد رسيد. از طرف ديگر در حالتي كه منبع تغذيه با بار كامل در حالت پايدار به سر مي برد اگر ناگهان بار توسط كليد قطع شود، آنگاه ناگهان ولتاژ خروجي صعود مي كند، و ازحالت قبلي خود فراتر مي رود و سپس با چندين نوسان به حالت پايدار بدون بار خواهد رسيد. در اين حالت ممكن است كه قطعاتي كه در بلوكهاي خروجي منبع تغذيه هستند اين سطح تغييرات را تحمل نكنند و از بين بروند. در بعضي از موارد دربعضي از سيستمها ممكن است كه خروجي به حالت پايدار نرسد و نوساني ياحتي ناپايدار شود. از آنجا كه در خروجي اغلب منابع تغذيه فيلتر هاي صافي براي كاهش ريپل ولتاژ و جريان مي باشند كه اين فيلترها داراي ظرفيتهاي خازني بزرگي هستند. با ناپايدار شدن ولتاژ امكان انفجار در خازن وجود دارد.
از سوي ديگر زمان بازيابي يا Recovery Time زمان لازم براي بازگشت به حالت پايدار طبيعي مي باشد، كه بايستي تاحد ممكن اين زمان كوچك باشد. پس بايد توسط روشهاي رگولاسيون خاص ولتاژ خروجي را محدود كرد و سعي نمود كه در كمترين زمان ممكن و با كمترين نوسان و Over Shoot به حد پايداري خود برسد. زمان پاسخ گذرايي در منابع تغذيه و بخصوص در منابع تغذيه سوئيچينگ با روشهاي مختلفي كه سازندگان SMPS از آن استفاده مي كنند نظيرحلقه هاي فيدبك و جبران ساز و قرار دادن فيلترهاي مخصوص در طبقات مختلف منبع تغذيه كه در قسمتهاي بعدي به آن اشاره مي شود، خيلي كوتاه خواهد شد.



راندمان:
يك منبع تغذيه بدون بازدهي مطلوب دو خاصيت زير را دارا مي باشد:
1- انرژي محدود: از اين قبيل منابع مي توان به باطري اشاره كرد كه با مصرف مستمر انرژي اوليه خود را رفته رفته از دست مي دهد و توان خروجي آن به سمت صفر ميل مي نمايد.
2- حجم زياد و نياز داشتن به هيت سينكها بزرگ: از اين منابع تغذيه مي توان منابع تغذيه با ترانسفورماتور را نام برد كه انرژي زيادي صرف خنك سازي و تلفات حرارتي آن مي شود.
حفاظت:
همة منابع تغذيه با روشهاي خاصي در برابر شرايط ناخواسته محافظت مي شوند كه حفاظت هاي مشترك بين كليه منابع تغذيه عبارتند از:
1- حفاظت در برابر اضافه ولتاژ: از مهمترين حفاظتها، محافظت بار و منبع تغذيه در مقابل اضافه ولتاژ است. ساده ترين نوع كنترل ولتاژ در چنين مواقعي خاموش شدن منبع تغذيه بصورت اتوماتيك است. اين مدل از كنترل كننده ها در زمانهاي ابتدائي حالت گذرا عمل مي كند. عموماً ممكن است از يك ميله تريستوري براي اين منظور استفاده شود. در زماني كه تريستور قابليت روشن شدن را دارد، درصورتي كه سنسور قرار داده شده در خروجي احساس كند كه ولتاژ از حد مجاز بالاتر رفته است بلافاصله آتش شده و ورودي و خروجي منبع تغذيه را با هم قطع مي كند. در روشهاي ديگر با اتصال كوتاه كردن خروجي، يك جريان اتصال كوتاه از مدار مي گذرد و محدود كننده هاي جريان در اين زمان عمل كرده و با استمرار يافتن اين عمل مي توان خروجي منبع تغذيه را تا حد مجاز قابل قبولي كاهش داد و در برابر اضافه ولتاژ از سيستمها محافظت كرد.
2- حفاظت در برابر اضافه جريان: بسياري از منابع تغذيه داراي انواع مختلف محدود كننده هاي جريان هستند. بنابراين اگر جريان بار از سطح مجاز بالاتر رود، در نتيجه ولتاژ خروجي كاهش يافته و طبق قانون اهم جريان در سطح مجاز و قابل اطميناني محدود مي شود.
3- حفاظت در برابر اتصال كوتاه: روش حفاظت در مقابل اضافه جريان امكان محافظت در برابر اتصال كوتاه را مي تواند فراهم نمايد، ولي اين شرط كافي براي حفاظت منبع تغذيه در برابر جريان اتصال كوتاه نمي باشد. چون اتصال كوتاه اغلب در حالت ماندگار اتفاق مي افتد و به راحتي بر طرف نخواهد شذ. به همين خاطر با استمرار اين شرايط و تلفات حرارتي زياد امكان آتش سوزي زياد است. براي جلوگيري از چنين اتفاق ناخوش آيندي بايد از مدار شكن استفاده كرد تا بلافاصله مدار را خاموش كند. و تا وقتي كه اتصال كوتاه در ترمينالهاي منبع تغذيه از بين نرفته است، امكان روشن كردن منبع تغذيه وجود نداشته باشد.
4- حفاظت در مقابل جريان تهاجمي: SMPSها عموماً داراي خازنهاي بزرگ جهت نرم كردن ولتاژ DC و جلوگيري ريپل ولتاژ در نزديك ورودي هستند، كه باعث مي شود جريان بزرگي در لحظه روشن كردن سوئيچ ها در مدار جاري گردد. بسياري از SMPSها داراي محدود ساز جريان براي كاهش دادن جريان هجومي مي باشند.



تداخل الكترومغناطيسي:
مسأله تداخل الكترومغناطيسي يا EMI در سيستمهاي خطي در طيف فركانسي كوچكتر از KHZ20 در منابع تغذيه سوئيچينگ قابل چشم پوشي مي باشد. اما با بالا رفتن فركانس، هارمونيكهاي با فركانس بيشتر از فركانس اصلي، ايجاد تداخل در باندهاي راديويي و مخابراتي مي كنند. از آنجايي كه منابع تغذية سوئيچينگ امروزه در توانهاي بالا هم كاربرد هاي وسيع پيدا كرده اند، اين گونه از منابع تغذيه سوئيچينگ به عنوان يك منبع توليد نويز شديد و قوي براي مدارات مخابراتي شناخته مي شوند. بنابراين با فيلتر كردن ورودي و خروجي، ميزان اثر تداخل الكترومغناطيسي را تا حد امكان بايد كاهش داد.
زمان Hold Up:
اين زمان در SMPSها خيلي مهم است و بايستي كه با ايجاد اشكال در خروجي بتوان بلافاصله ورودي منبع تغذيه را قطع كرد. اين زمان عموماً بر طبق استاندارد، حدود يك يا دو سيكل با فركانس 50HZ يعني زماني بين 20 الي 40 ميلي ثانيه مي باشد.
رنج حرارتي:
يك نكته قابل توجه در مورد منابع تغذيه سوئيچينگ، خصوصاً منابع تغذية سوئيچينگي كه در داخل محفظه نگاهداري مي شوند، مسألة بالا رفتن سريع حرارت در داخل CASE يا محفظه است. اين حرارت ممكن است كه حتي از دماي بيرون جعبه هم بيشتر باشد و قطعات منبع تغذيه از اين حرارت خيلي تأثير پذير هستند. بنابراين بايد رنج حرارتي كه بدليل مصرف توان در داخل جعبه تغيير مي كند را مدِ نظر قرار داد و با طراحي مناسب پايداري حرارتي را در منبع تغذيه سوئيچينگ بخوبي حفظ نمود.
ابعاد:
حجم فيزيكي و پهناي يك منبع تغذيه طبق ضرايب خاصي محدود مي شود. با دانستن مشخصات كاري منابع تغذيه سوئيچينگ مي توان مقدار حجم يك منبع تغذية سوئيچينگ را براحتي محاسبه كرد. عموماً SMPS هايي كه با فركانس كليدزني بالاتر از فركانس صوتي داراي حجم كوچكي هستند، چرا كه كليدهايي كه در اين رنج كار مي كنند داراي تحمل توان كمي هستند. با توجه به مسألة EMI نمي توان سرعت كليدزني را خيلي افزايش داد. چون باعث توليد نويز مخابراتي مخربي خواهد شد. پس مي توان نتيجه گرفت كه حجم و اندازه يك SMPS نسبت عكس با فركانس كليدزني و نسبت مستقيم با توان منبع تغذيه دارد.



انواع استانداردهاي معتبر در SMPS ها:
بسياري از كشورهاي سازنده منابع تغذيه سوئيچينگ داراي معيارهاي تقريباً ثابت و مشابه در رابطه با SMPS ها مي باشند. براي مثال در اروپا يكي ازسازندگان مهم آلمان كه خود يکي از مهمترين پايه گذاران SMPS است يعنيVerbakd Deutscher Electroniker (VDE) است كه بسياري از تستهاي بين المللي را دارا مي باشد.
يكي از مسائل مهم منبع تغذيه تثبيت و كنترل روي اشكال متفاوت EMI است. كه استاندارد (VDE) معيارهايي براي حل اين مشکل دارد. اين معيارها نسبتاً با استانداردهاي مشابه آمريكايي تطابق دارند.
تستهاي استاندارد قابل اطمينان معتبر ديگر در مورد منابع تغذيه سوئيچينگ موجود است كه عبارتند از Underwriters Laboratory (UL) كه اين تستها در ايالات متحده امريكا انجام مي شود. استاندارد ديگري كه در كانادا بر روي منابع تغذيه سوئيچينگ اعمال مي شود، Canadian Standard Association (CSA) است.
نكته قابل توجه در مورد (UL) و (CSA) اين تستها اغلب در مورد محصولات الكتريكي که در امريكا و كانادا بکار برده مي شوند تصويب شده است، وحتماً اين تستها بايد در مورد اين اقلام انجام شود و در مورد محصولاتي كه به ساير نقاط جهان صادر مي شوند انجام نمي شود.
استاندارد International Electro technical Commission (IEC)، استاندارد ديگري است كه حتماً يك منبع تغذيه سوئيچينگ بايد از تستهاي آن سر بلند بيرون آمده باشد. به عنوان مثال IEC380 براي اعطاء مجوز به يك محصول که 3750v متناوب را بين ورودي و خروجي مدار اعمال مي كند. بايد مدارات اوليه و ثانويه فاصله 8mm و عايق بين فلزات و ساير اجزاء مدار با ضخامت 3mm را بايد رعايت كرده باشند. اين تست قويتر از انواع مشابه در استانداردهاي آمريكايي است.
تست تداخل الكترومغناطيسي در استانداردهايIEC478 part 3 و همچنين در آلمان طبق VDE0871 و در بريتانيا BS800 مصوب 1983 ميلادي و ... داراي قوانين و معيارهاي مشخصي مي باشد. حتماً در منابع تغذيه سوئيچينگ و هر نوع محصول الكتريكي ديگر بايست به اين استانداردها توجه نمود.
اقتصادي بودن:
مهمترين مسأله براي توليد كننده و مصرف كننده هر كالايي بحث اقتصادي و مقرون بصرفه بودن آن است. يك طراح بايد به قيمت تمام شده كالا توجه ويژه داشته باشد. طبيعتاً هر چه كارايي يك سيستم بالا رود قيمت آن هم گرانتر خواهد شد.
انرژي:
مصرف انرژي منابع تغذيه سوئيچينگ را توسط مدارات هوشمند ميكروپروسسوري مي توان تا حد ممكن كاهش داد. برنامه اي كه امروزه طراحان آنرا پيش گرفته اند، تدوين قوانين خاص براي تحقق بخشيدن به اين مهم است. از اين قبيل قوانين مي توان به برچسب ستاره انرژي امريكا service mark of the U.S. EPA اشاره كرد.
با خاموش كردن منابع تغذيه سوئيچينگ به صورت Stand by مي تواند از تلفات انرژي ناشي از كليدزني و ... درمواقعي كه بار به ترمينال منبع تغذيه متصل نمي باشد، تا حد چشمگيري جلوگيري كرد و همچنين داغ شدن منبع تغذيه را در زمان بي باري كاهش داد.