شکل 2
در هر حال، هنگاميکه بحث استفاده از درصد پايين پرکننده مطرح باشد، در اين حالت نانوکامپوزيتهاي خاك رس - پليمر را با کامپوزيتهاي تقويت شده بوسيله الياف، مقايسه کنيم، ميبينيم که نانوکامپوزيتها تقويت بهتري را نسبت به کامپوزيتهاي اليافي مرسوم، نشان ميدهند. اطلاعات بدست آمده بوسيله تحقيقات Fornes و Panl در مورد ضريب يانگ نانوکامپوزيتهاي خاك رس / نايلون6 و کامپوزيت هاي نايلون6 تقويت شده با الياف شيشهاي در محدوده استفاده از 10 درصد وزني پرکننده، در شکل 3 رسم شده است. ميتوان مشاهده نمود که نانوکامپوزيتها کارآيي بيشتري را در بهبود ضريب يانگ نسبت به کامپوزيتهاي اليافي نشان ميدهند.
] شکل 3
از مقايسه بالا مشهود ميگردد نانوکامپوزيتهاي خاك رس - پليمر در محدوده بارگذاري درصد پايين از الياف، امتيازاتي نسبت به کامپوزيتهاي تقويت شده با الياف دارند و مطمئناً بازار کامپوزيتهاي اليافي مرسوم با حجم پايين از جزء اليافي، با پيشرفت نانوکامپوزيتهاي خاك رس - پليمري تحت تاثير قرار خواهد گرفت، ولي فعلاً تابحال، پيشرفت در نانوکامپوزيت ها تاثير کمي روي بازار کامپوزيتهاي تقويت شده با الياف گذاشته است.
مشكلات توسعه نانوکامپوزيت هاي خاک رس - پليمر
علاوه بر پرکنندهها، عمده مشکلات پيش روي پيشرفت نانوتکنولوژي خاك رس - پليمر عبارتنداز: عدم شناخت مکانيزمهاي موثر در افزايش کارايي، به کاربردي پليمرهاي ترموستينگ و عدم پايداري ارگانوکليها در برابر حرارت.
اگرچه مدلسازيهاي زيادي در جهت پيشبرد درک از مکانيزم افزايش کارايي عمده خواص فيزيکي و مهندسي در استفاده از نانوکامپوزيتهاي خاك رس - پليمر انجام شده، ولي هنوز مسافت زيادي را پيش رو داريم. به عنوان مثال، هنوز خواص فيزيکي مهندسي لايههاي منفرد سيليکات، دقيقا شناخته نشدهاند. از اين رو مشکل است که يک مکانيزم تقويتکننده ايجاد کنيم، و از طرفي، ساختار ذغال باقيمانده ناشي از احتراق نانوکامپوزيت خاك رس - پليمر هنوز روشن نيست. بدون آن ممکن نيست مکانيزمي براي ايجاد مقاومت در برابر آتش، براي آن طراحي کنيم. مدلسازيها و تحقيقات تجربي اساسي، بايد در جهتي هدايت شود که در آينده اين موانع برطرف شوند.
به کاربردن پليمرهاي ترموستينگ، مشکل عمده ديگري در توسعه نانوکامپوزيتهاي خاك رس - پليمر ميباشد. ترکيب خاک رس با يک پيش ماده پليمر ترموستينگ ميتواند عامليت يک پليمر را تغيير دهد. تغيير در عامليت بر ميزان اتصالات عرضي تاثير ميگذارد و بخوبي مشخص است که عمده خواص مهندسي پليمرهاي ترموستينگ، تابعي از ميزان تعداد اتصالات عرضي است. با اين وجود گزارشهايي هم وجود داشته مبني بر بهبود خواص مکانيکي سيستمهاي پليمري تروستينگي که ميزان اتصالات عرضي آن پايين بوده است، از جمله اپوکسي رزين با T g پايين و پلي اوراتانها. آخرين مسئله مستقيماً بر ميگردد به نگراني در مورد تجاريسازي نانوتکنولوژي خاك رس - پليمر، کمبود ارگانوکليهاي پايدار در برابر گرما و نيز از نظر تجاري در دسترس، از موانع ثبت شده در اين مسير هستند. بيشتر ارگانوکليهاي در دسترس، از جايگزيني کاتيون فلزي درون ساختار رس، با نمکهاي آمونياک آلي تهيه ميشوند. اين نمکهاي آمونيم در مقابل گرما ناپايدارند و حتي در دماهاي کمتر از 170 درجه سانتيگراد از بين ميروند. مسلماً چنين مواد فعال سطعي (سورفکتنت) براي بيشتر پلاستيکهاي مهندسي هنگاميکه از تکنولوژي فرآيند ذوب شدن براي ساختن نانوکامپوزيتها استفاده شود، صاحب نيستند و ساخت نانوکامپوزيتهايي که در آن از ارگانوکليهاي اصلاح شده بوسيله نمکهاي آمونيم بکار رفته، با استفاده از تکنيکهاي ديگر، به يک معضل تبديل شده است. اگرچه تعداد زيادي سورفکتنت پايدار در برابر گرما، مثل فسفونيم شناخته شدهاند، ولي اين سورفکتنتها براي کاربرد تجاري، مقرون به صرفه نيستند. نوآوريهايي در جهت اصلاح رسهاي آبدوست با استفاده از پليمرها و اليکومرهاي چند عاملي انجام شده تا ارگانوکليهاي پايدار در برابر گرما براي توليد نانوکامپوزيتهاي رس - پليمر بسازند.
خلاصه و نتيجهگيري:
پيشرفتهاي عمده در توسعه نانوکامپوزيت هاي خاك رس - پليمر به پانزده ساله اخير بر ميگردد و مزيتها و محدوديتهاي اين تکنولوژي روشن شده است. با اين حال، تا شناخت مکانيزمهاي افزايش کارايي و بهبود خواص مهندسي آنها و اينکه بتوانيم ريزساختارهاي آنها را سازماندهي و چينش کنيم تا به خواص مهندسي ويژه دست پيداي کنيم، راه طولاني در پيش رو داريم. در مواقعي که از درصد پايين پرکننده استفاده شود، نانوکامپوزيتهاي خاك رس - پليمر اين پتانسيل را دارند تا جايگزين کامپوزيتهاي مرسوم تقويت شده با الياف شوند.
علاقه مندی ها (بوک مارک ها)