نمایش نتایج: از شماره 1 تا 2 , از مجموع 2

موضوع: چرا باید ریاضی بخوانیم?

  1. #1
    انجمن علمی و پژوهشی
    زیبایی های زندگی در دستانه توست
    تاریخ عضویت
    Jul 2011
    محل سکونت
    sudae eshgh
    نوشته ها
    10,188
    تشکر تشکر کرده 
    2,930
    تشکر تشکر شده 
    4,180
    تشکر شده در
    2,113 پست
    حالت من : Ashegh
    قدرت امتیاز دهی
    2045
    Array

    چرا باید ریاضی بخوانیم?

    رفاه مادی و آسایشی که بشر امروز از آن برخوردار است در پرتو دانش و فن آوری مدرن و مهندسی و سایر علوم بویژه فیزیک، شیمی، بیولوژی و رشته های مربوط به آنها بدست آمده است. در مطالعه این رشته ها و تقریبا" هر رشته دیگر دانشگاهی، دانشجو بدانستن سطح معینی از ریاضیات نیازمند است. بیشترین معلومات ریاضی برای مطالعه در رشته های مهندسی، فیزیک و شیمی مورد نیاز است. سایر رشته ها مانند پزشکی، روانشناسی، جامعه شناسی، بیولوژی، کشاورزی، بازرگانی، تجارت، بانکداری و ده ها رشته دیگر اگر چه ظاهرا" ارتباط زیادی با ریاضیات ندارند – و در حقیقت تا صد سال قبل هم این رشته ها تکیه زیادی بر ریاضیات نداشتند – اما در شکلهای مدرن و امروزی خود، این رشته ها دارای تئوری هایی هستند که درک آنها و کار بردشان شدیدا" بستگی به آمار و تکنیک های ریاضی دارد. تهیه آمار از طریق جمع آوری اطلاعات و تجزیه و تحلیل آنها که تنها به روشهای ریاضی و یا با استفاده از کامپیوتر امکان پذیر است، امروزه یکی از راه های مهم حل مسائل علوم تجربی و مسائل موجود در جوامع بشری است. حتی رشته های مختلف علوم کامپیوتری هم بدون ریاضیات بخوبی به پیش نمیروند.




    ریاضیات تنها زبانی است که پدیده های طبیعی جهان هستی را بخوبی توضیح میدهد. ریاضیات حتی پدیده های اجتماعی_خواه اجتماعات بشری، خواه اجتماعات حیوانی_ را نیز میتواند بخوبی تشریح کند و با ترسیم مدلی برای آنها تغییرات آتی آنها را پیش بینی نماید. لوباچفسکی (1) میگوید : "هیچ شاخه ای از علم ریاضی _هر اندازه هم که انتزاعی و مجرد باشد_ وجود ندارد که یک روز کاربردی برای آن در توضیح پدیده های دنیای واقعی پیدا نشود." از کهکشان ها و حرکت سیارات عظیم به دور خورشید ها گرفته تا حرکت ابر ها، بادها، گردبادهاو از پرواز فضا پیما های غول پیکر و هوا پیماهای عظیم الجثه و حرکت قطارها، کشتی ها و اتومبیل ها گرفته تا افتادن سیبی از درخت و سقوط قطرات باران و حدوث رنگین کمان و حرکت بی امان و خستگی ناپذیر الکترون ها به دور هسته اتم ها و فعل و انفعالات شیمیایی که میلیون ها از آن هر لحظه در طبیعت رخ میدهد و هر گونه "تغییر" در هر چیز و هر زمان، همه و همه با کمک مدلها و معادلات ریاضی قابل بر رسی هستند. قسمت عمده فیزیک با زبان ریاضی قابل تشریح و فهم است. تئوری کوانتوم و تئوری نسبیت با زبان ریاضی است که کوشش دارند قوانین کائنات را تشریح کرده و توضیح دهند.




    گالیله میگوید : " جهان هستی همواره در برابر دیدگان حیرت زده انسان گسترده خواهد ماند و انسان هرگز نمیتواند آنرا درک کند مگر اینکه زبانی را که این جهان با آن نوشته و توضیح داده شده است یاد بگیرد و حروف آنرا بشناسد. این زبان چیزی جز ریاضیات نیست و این حروف جز مثلث، دایره و سایر اشکال هندسی چیز دیگری نیستند. بدون این زبان انسان حتی یک کلمه از جهان هستی را نخواهد فهمید و همواره گمشده ای را ماند که در کوچه های پر پیچ و خم سرگردان است."




    ریاضیات روش " منطقی فکر کردن" و "واقع بین بودن" را میاموزد. ریاضیات خالی از حدس و گمان و بدور از آن است. اثبات هر قضیه یا شکل دادن هر تئوری و استخراج هر فرمول بر اساس منطق و استدلال ریاضی است و وقتیکه یکی از این قضایا یا فرمول ها ثابت شد دیگر مرور زمان روی آن اثری نخواهد گذاشت. قضیه فیساغورس در هندسه اقلیدسی بیش از 2500 سال عمر دارد و با بیش از 250 روش مختلف ثابت شده است. همه این روشها یک حقیقت واحد را ثابت کرده اند، حقیقتی که تا به امروز تغییر نکرده و در آینده نیز تغییر نخواهد کرد. سایر قضایای ثابت شده ریاضی نیز همین طورند و دیگر تغییر نمیکنند و گذشت زمان روی آنها اثری ندارد، در حالیکه برخی از نظریه هایی که در سایر رشته های علوم_ بویژه علوم تجربی _مطرح میشوند بمرور زمان کهنه شده و عوض میشوند. دیگران میایند و با تجربه ها و مشاهدات جدید خود نظریه ها را عوض میکنند یا آنها را بهبود می بخشند و به روز میکنند.




    بسیاری از مردم فکر میکنند که فارغ التحصیل رشته ریاضی فقط کار آیی و کفایت در تدریس ریاضیات را دارد و بس در حالیکه امروزه در غرب، بسیاری از کار فرما ها منجمله دولت ها برای استخدام در بخش های مختلف سازمان ها و نهاد های خود علاقمندند متخصصینی را که استخدام میکنند، دارای پشتوانه خوبی از ریاضیات نیز باشند و بویژه قادر به تجزیه و تحلیل مسائل موجود در آن کار و مطابقت دادن آنها با مدلهای ریاضی و بالاخره حل مسئله باشند.




    اینها برخی از دلائلی بودند که آموختن ریاضیات را در عصر امروز ضروری میکنند. اما آموختن ریاضیات یک دلیل دیگر هم دارد و آن اینستکه برای بسیاری از انسانها ریاضیات از جذابیت خاصی برخوردار است و آن پی بردن به شگفتی ها و اسرار و زیبایی هایی است که این دانش در ذات خود نهفته دارد.


    اگــر بــه کـــــــسی بــیش از حــد بــها بدی
    حــتمآ بــهش بــدهــــــکار مــیشی






  2. کاربر مقابل از M.A.H.S.A عزیز به خاطر این پست مفید تشکر کرده است:


  3. #2
    انجمن علمی و پژوهشی
    زیبایی های زندگی در دستانه توست
    تاریخ عضویت
    Jul 2011
    محل سکونت
    sudae eshgh
    نوشته ها
    10,188
    تشکر تشکر کرده 
    2,930
    تشکر تشکر شده 
    4,180
    تشکر شده در
    2,113 پست
    حالت من : Ashegh
    قدرت امتیاز دهی
    2045
    Array

    پیش فرض

    چرا باید ریاضیات بخوانیم؟
    ریاضی - ریاضی
    250064چرا باید ریاضیات بخوانیم؟راجر بیکن فیلسوف انگلیسی در سال 1267 میلادی پاسخ این سوال را چنین داده است:((کسی این کار را نکند نمیتواند چیزی از بقیه علوم و هر آنچه دراین جهان است بفهمد...چیزی که بدتر است این است که کسانی که ریاضیات نمیدانند به جهالت خودشان پی نمی برند ودر نتیجه در پی چاره جویی بر نمی آیند.))
    می توانم همین جا سخنرانیم را پایان دهم اما ممکن است بعضیها فکر کنند که شاید خیلی چیزها در هفت قرن گذشته تغییر کرده باشد....
    شاهدی تازه تر می آورم پال دیراک از خالقان مکانیک کوانتومی معتقد است که وقتی تئوری فیزیکی ای را پایه ریزی می کنید نبایدبه هیچ شهود فیزیکی ای اعتماد کنید.پس به چه چیزی اعتماد کنید؟به گفته ی این فیزیکدان مشهور فقط به برنامه ای متکی بر ریاضیات _ولو اینکه در نگاه اول ربطی به فیزیک نداشته باشد.
    در حقیقت در فیزیک تمامی ایده های صرفا فیزیکی رایج در ابتدای این قرن را کنار گذاشته اند در حالی که الگوهای ریاضی ای که به زرادخانه فیزیکدان ها راه یافته اند به تدریج معنای فیزیکی یافته اند.در اینجاستکه قابل اعتماد بودن ریاضیات به روشنی رخ مینمایاند.
    بنابراین الگوسازی ریاضی روشی پربار برای شناخت در علوم طبیعی است.اکنون می خواهیم الگوهای ریاضی را از نگاهی دیگر یعنی مسئله ی آموزش ریاضی بررسی کنیم.
    سه روش اموزش ریاضیات
    در اموزش ریاضیات روسی (هم در دبیرستان و هم در مقاطع بالاتر) ما پیرو نظام اموزشی اروپایی هستیم که بر اساس ((بورباکی ای سازی))ریاضیات بنا شده است (نیکلاس بورباکی نام مستعار گروهی از ریاضیدانان فرانسوی است که ازسال 1939 به انتشار مجموعه ای از کتابها دست زده اندکه در انها شاخه های اصلی ریاضیات جدید به طور اصولی_یعنی به روش اصل موضوعی براساس نظریه ی مجموعه ها_شرح داده شده است.)
    اصولی کردن ریاضیات به نوعی تصنعی کردن آموزش آن منجر می شود واین زیانی است که بورباکی ای سازی به آموزش ریاضیات وارد کرده است.نمونه ای شگرف مثال زیر است:
    از دانش آموز سال_دومی مدرسه ای در فرانسه پرسیده اند ((دو بعلاوه ی سه چقدر میشود؟)) پاسخ چنین بود ((چون جمع تعویض پذیر است می شود سه بعلاوه ی دو.))
    پاسخی واقعا قابل تامل! کاملا درست است اما دانش آموزان حتی به جمع کردن ساده ی این دو عدد هم فکر نکرده اند زیرا در تعلیم انها تکیه بر ویژگی های عملها بوده است. در اروپا معلمان متوجه نارساییهای این روش شده اند و بورباکی ای سازی را کنار گذاشته اند.
    طی چند سال گذشته آموزش ریاضیات روسی دستخوش تغییراتی به سبک آمریکایی شده است.اساس این سبک این اصل است: آنچه را که برای کاربردهای عملی لازم است آموزش بدهید.در نتیجه کسی که فکر می کند به ریاضیات احتیاجی نخواهد داشت اصلآ لازم نیست ان را بخواند.ریاضیات درسی اختیاری در دوره ی راهنمایی و دبیرستان است_مثلآ یک سوم دانش آموزان دبیرستانی جبر نمی خوانند.نتیجه ی این امر را در مثال زیر روشن کرده ایم:
    در آزمونی برای دانش آموزان چهارده ساله ی آمریکایی از آنها خواسته شده بود که برآورد کنند (نه اینکه حساب کنند بلکه برآورد کنند) که اگر 80 درصد از عدد 120 رابرداریم این عدد چه تغییری می کند.سه نوع پاسخ را می توانستند انتخاب کنند: زیاد میشود،تغییری نمیکند،کمتر میشود.تقریبآ 30 درصد دانش آموزان سوال شونده پاسخ درست را برگزیده بودند.یعنی اینکه پاسخها را تصادفی انتخاب کرده بودند.نتیجه: هیچ کس هیچ چیز نمی داند.دومین ویژگی شاخص روش آموزش ریاضی آمریکایی،کامپیوتری کردن آن است.
    جذابییت کار با کامپیوتر به خودی خود به گسترش تواناییهای فکری کمکی نمی کند.مثالی دیگر از یکی از آزمونهای آمریکا میاوریم:
    کلاسی 26 دانش آموز دارد.این دانش آموزان می خواهند با اتومبیل به مسافرت بروند.در هر اتومبیل یک نفر از اولیا و چهار دانش آموزجا می شوند.چند نفر از اولیا را میتوانیم دعوت کنیم؟
    جوابی که همه داده بودند 65 نفر بود ودانش آموزان می دانستند که اگر جواب باید عددی صحیح باشد،می توان بلایی سر ممیز آورد_مثلآ می توان اصلآ آن را برداشت.
    نمونه ی دیگری از یکی از آزمونهای رسمی دانش آموزی در سال 1992 می آوریم:
    رابطه ی کدام زوج شباهت بیشتری به رابطه ی میان زاویه و درجه دارد:
    الف) زمان وساعت
    ب) شیر وکوارت ((واحد اندازه گیری مایعات برابر با 44/1 لیتر))
    ج) مساحت و اینچ مربع
    پاسخ،مساحت و اینچ مربع است،زیرا درجه ی کوچکترین واحد اندازه گیری زاویه و اینچ مربع کوچکترین واحد اندازه گیری مساحت است،اما ساعت را می توان به دقیقه هم تقسیم کرد.
    طراح این مسئله مسلمآ مطابق نظام امریکایی می اندیشیده است.می ترسم که طولی نکشد که ما هم به چنین سطح نازلی برسیم.( جو برمن،استاد ریاضی در نیویورک توضیح داده که( از نظر او که آمریکایی است) ،پاسخ درست این مسئله کاملآ روشن است.او گفت که ((اصل مطلب این است که من می توانم میزان حماقت طراح این مسئله را دقیقآ تصور کنم.))_) مایه ی شگفتی است که تعداد زیادی ریاضیدان و فیزیکدان برجسته در ایالات متحده وجود دارد.
    امروزه آموزش ریاضیات ما آرام آرام از نظام اروپایی به نظام آمریکایی تبدیل می شود.مطابق معمول ،باز هم عقبیم،حدود سی سال از اروپا عقبتریم و بنابراین سی سال بعد زمان آن فرا میرسد که اوضاع را سروسامان بدهیم و از چاهی که با ظناب نظام آموزشی آمریکایی به آن رفته ایم بیرون بیاییم.
    سطح آموزش ریاضی سنتی ما بسیار بالا و بر اساس آموزش مسئله های حساب بوده است.حتی تا همین بیست سال پیش هم خانواده هایی بودند که نسخه هایی از کتابهای قدیمی مربوط به مسئله های ((سود و زیان)) را داشتند.در حال حاضر، همه ی اینها از بین رفته است.در آخرین اصلاحات آموزش ریاضی،جبری سازی، دانش آموزان را به روبات تبدیل کرده است.
    مساله های حساب است که ((بی محتوایی)) ریاضیاتی را که تدریس می کنیم نشان می دهند مثلآ این مسئله را در نظر بگیرید:
    1.سه تا سیب داریم.یکی را برمی داریم.چند تا باقی مانده است؟
    2.چند برش با اره لازم است تا تکه ای هیزم را به سه بخش تقسیم کنیم؟
    3.تعداد خواهران بوریس از تعداد برادرانش بیشتر است.در خانواده ی او تعداد دختران چند تا بیشتر از تعداد پسران است؟
    از منظر حساب اینها مساله های متفاوتی هستند،زیرا محتوایشان فرق می کند.همچنین،تلاش فکری لازم برای حل کردن مسئله ها هم کاملآ متفاوت است،هر چند که الگوی جبری هر یک از آنها یکی است: 2=1-3 جالب توجه ترین نکته در ریاضیات،فراگیر بودن شگفت آور الگوها و کارایی نامحدود انها در مساله های علمی است.
    به قول ولادیمیر مایاکوفسکی،شاعر بزرگ روس: ((کسی که اولین بار دو بعلاوه ی دو می شود چهار را، مطرح کرده است حتی اگر با جمع کردن دو تا ته سیگار با دو تا ته سیگار دیگر به این حقیقت رسیده باشد،ریاضیدان بزرگی بوده است.هر کس پس از او به این نتیجه رسیده باشد،حتی اگر چیزهای بسیار بزرگتری،مثل لوکوموتیوها را با هم جمع کرده باشد،ریاضیدان نیست)) لوکوموتیو شماری،روش آمریکایی آموزش ریاضیات است.چنین چیزی مصیبت بار است.طرز پیشرفت فیزیک در ابتدای سال اخیر نمونه ای است که نشان می دهد ریاضیات لوکوموتیوی به مراتب از ریاضیات ته سیگاری به درد نخورتر است:ریاضیات کاربردی نتوانسته همگام با فیزیک پیشترفت کند،در حالی که ریاضیات نظری هر آنچه را که فیزیکدانان برای بسط بیشتر دانش خودشان نیاز داشته اند برایشان فراهم کرده است.ریاضیات لوکوموتیوی از روال معمول عقب می ماند: تا حساب کردن با چرتکه را آموزش بدهیم،سر و کله ی کامپیوترها پیدا می شود .باید شیوه ی فکر کردن را آموزش بدهیم،نه طرز فشار دادن دکمه ها را.


    اگــر بــه کـــــــسی بــیش از حــد بــها بدی
    حــتمآ بــهش بــدهــــــکار مــیشی






  4. کاربر مقابل از M.A.H.S.A عزیز به خاطر این پست مفید تشکر کرده است:


علاقه مندی ها (بوک مارک ها)

علاقه مندی ها (بوک مارک ها)

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست در پست خود ضمیمه کنید
  • شما نمیتوانید پست های خود را ویرایش کنید
  •  

http://www.worldup.ir/