صفحه 4 از 13 نخستنخست 12345678 ... آخرینآخرین
نمایش نتایج: از شماره 31 تا 40 , از مجموع 124

موضوع: تازه های علم شیمی

  1. #31
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض

    در ابتدای این مطلب بهتر است تعریفی از کریستال داشته باشیم : یک ساختار کریستالین در واقع در نتیجه اتصال اتم ها و مولکولها (Packing) در یک شبکه بلوری خاص می باشد.در کل ۱۴ شبکه بلورین وجود دارد که ترکیبات به طور کلی در این شبکه ها متبلور می شوند.
    همانگونه که می دانیم تکنیکهای گسترده ای مانند: IR,NMR,Mass,ESR,Uv جهت شناسایی مواد وجود دارند که عموماً نمی توان با استفاده از یکی از آنها شناسایی دقیقی انجام داد.در واقع تنها تکنیکی که به ما ساختار دقیق ، جهت گیری فضایی و طول پیوندها را می دهد XRD یا تکنیک پراش اشعه X است.برای به کار گیری این تکنیک ما باید ترکیب مورد نظر را کریستاله کنیم.
    قطر مناسب کریستال برای استفاده در این تکنیک بین ۵/۰ تا ۴۵/۰ میلی متر می باشد.
    اما برای تهیه کریستال تکنیکهای بیشماری وجود دارد که معمولاً هر تکنیکی برای یک دسته از ترکیبات مناسبتر است.ابتدا باید نکاتی از قبیل پایداری و حساسیت های ترکیب سنتز شده (اکسید شدن ٬ جذب آب ، تفکیک شدن دمایی و.....) در نظر گرفته شود.
    مهمترین مرحله برای کریستاله کردن انتخاب حلال است.همچنین خالص بودن ترکیب بسیار بسیار مهم است (در صورت وجود ناخالصی یک مخلوط روغنی در ته ظرف بوجود می آید).پس خالص سازی ترکیب گام نخست است (توسط حل کردن مجدد در حلال مناسب و سپس صاف کردن).انتخاب ظرف برای کریستاله کردن هم می تواند مهم باشد.بهترین حالت استفاده از ظروف با تحدب یکنواخت (مثل بالون یا ارلن) که تمیز و در عین حال خش دار (سایتهای مناسب برای القاء کریستالیزاسیون) می باشد.
    یکی از عمومی ترین این روشها، کریستالیزه کردن بوسیله تبخیر آهسته حلال است.به این منظور بهترین حلال ،حلالی است که نقطه جوش پایین و فراریت بالایی داشته در ضمن ترکیب مورد نظر را هم با کمی حرارت کاملاً در خود حل کند.ازمناسبترین این حلالها می توان ،اتانول (EtOH)با نقطه جوش ۷۸ درجه،استونیتریل(CH۳CN) با نقطه جوش ۷۶ ،دی کلرو متان (CH۲Cl۲) با نقطه جوش ۴۲ را نام برد.

  2. #32
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض

    خواصي هستند كه به تعداد ذره‌هاي حل شونده‌ي موجود درمحلول ( نه به نوع ذره‌ها) بستگي دارند اين خواص عبارتند از 1 – فشار بخار 2- افزايش منطقه‌ي جوش يك محلول 3- نزول نقطه‌ي انجماد محلول ( و4- فشاراسمزي .)

    فشار بخار

    اگر دريك بشر مقداري آب بريزيد آب به تدريج تبخير مي‌شود . فشار ناشي ارحضور مولكول‌هاي بخار در بالاي مايع فشار بخار مايع گفته مي‌شود . مايع‌ها درهردمايي تبخير مي‌شوند سرعت تبخير هرمايع به تعداد مولكول هاي مايع موجود در سطح بستگي دارد .

    وقتي ماده‌اي غير فراري درحلال مايع حل مي‌شود . معمولاً درسطح مايع برخي ذره‌هاي حل شونده جاي ذره‌هاي حلال را مي گيرند . اين كارازتعداد مولكول‌هاي حلال در سطح مي‌كاهد وازاين رو سرعت تبخير سطحي مايع را كاهش مي‌دهد به اين ترتيب فشار بخار حلال نيز كاهش مي‌يابد .

    افزايش نقطه‌ي جوش يك محلول

    جوشيدن زماني رخ مي‌دهد كه فشار بخارمايع با فشارهواي روي سطح مايع ( فشار محيط) برابر شود . درفشار 1 اتمسفر آب خالص در به جوش مي‌آيد . فشار بخار محلول شكردرآب كم‌ تراز آب خالص است . ازاين رو براي رساندن فشار بخار آن به فشار atm 1 بايد مولكول‌هاي آب از قسمت‌هاي زير به سطح بيايند و پس از تبخير به مولكول‌هاي روي سطح محلول بپيوندند . چون اين مولكول‌ها انرژي كم تري دارند براي تبخير آن‌ها به انرژي بيش تري نياز است : درنتيجه نقطه‌ي جوش محلول نسبت به حلال افزايش مي‌يابد به طور كلي نقطه‌ي جوش هرمحلول داراي ماده‌ي حل شونده‌ي غير فرارازحلال خالص بيشتراست.

    نزول نقطه‌ي انجماد محلول

    آب خالص دردماي ۰يخ مي‌زند درحالي كه محلول آب نمك درمقايسه با آب خالص نقطه‌ي انجماد پايين تري دارد . به طور كلي انجمادهرمحلول آبي كه داراي ماده‌ي حل شونده‌ي غير فرار است دردمايي پايين تراز آن رخ مي‌دهد .

    براي بررسي خوص كوليگاتيو از غلضت مولال استفاده مي شود

  3. #33
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض

    آب مقطر

    نگاه کلی:
    آب طبیعی به علت خاصیت حل کنندگی خوبی که دارد معمولا دارای حجم بالایی از نمکهای محلول در آب می‌شود. Co2 هوا به خاطر انحلال در آب و تولید اسید کربنیک ضعیف ، خاصیت خورندگی آب را بهبود می‌بخشد. بنابراین آب هنگام عبور از محیط‌های گوناگون مخصوصا محیط‌های آهکی مقداری از کربناتها را در خود حل می‌کند که این کربناتها همراه یونهایی مثل کلسیم ، منیزیم و … باعث ایجاد سختی موقت می‌شود که با جوشاندن از بین می‌رود. البته یونهای منیزیم و کلسیم و سایر یونهای فلزی با سولفات و نیترات و کلرو ایجاد سختی دائم می‌کنند. سختی آب باعث رسوب کردن صابون در آب می‌شود (خاصیت کف کنندگی صابون را از بین می‌برد)


    اثرات زیانبخش ناخا لصیهای آب در صنعت :
    آب در شیمی یکی از مهمترین حلالها می‌باشد و معمولا از آن به عنوان حلال عمومی نام می‌برند و بنابراین کاربرد اساسی در صنعت دارد که برخی از کاربردهای مهم به این شرح می‌باشد:
    به عنوان حلال
    به عنوان ماده اولیه برای شرکت در واکنشهای شیمیایی تهیه محصول
    به عنوان ماده واسطه برای خارج کردن مواد ناخواسته
    به عنوان بستر یا محیط واکنش

    وجود ناخالصیها در آب باعث ایجاد رسوب در دستگاههای حرارتی و دیگ بخار می‌شود که این عمل باعث کاهش عمر مفید دستگاه می‌گردد. بخاری که از آبهای ناخالص تولید می‌شود دارای کیفیت بسیار پایینی می‌باشد به عنوان مثال سیلیس همراه بخار خارج شده و در اثر سرد شدن روی پره‌های توربین رسوب می‌کند. خوردگی بویلرها و تأسیسات حرارتی و لوله‌ها ، اتلاف مواد شیمیایی و باقی گذاشتن لکه روی محصولات غذایی و نساجی از عوارض دیگر آبهای ناخالص می‌باشد.

    بهترین آب برای استفاده در صنعت آب بدون یون است اما هزینه تولید آب بدون یون بسیار بالاست. بنابراین در اکثر آزمایشگاهها و واحدهای صنعتی از آب مقطر استفاده می‌کنند همچنین در مناطق کویری و خشک که منابع آب آشامیدنی محدود می‌باشد. از روش تقطیر آب دریا برای تولید آب آشامیدنی استفاده می‌شود.

    روش تقطیر آب
    تقطیر یک محصول و خالص سازی آن به فراریت اجزای آن محلول یعنی اختلاف نقاط جوش آنها بستگی دارد. آب طبیعی از دو جزء حلال (آب) و مواد حل شده (انواع نمکها) تشکیل شده است. آب جزء فرار می‌باشد. در اثر حرارت آب بخار می‌شود و نمکهای موجود در آن در ظرف تقطیر به صورت رسوب باقی می‌ماند. اگر بخار آب حاصل را سرد کنیم بخار به مایع تبدیل شده و آب مقطر به دست می‌آید. با تکرار تقطیر می‌توان آب مقطر با خواص بهتری را بدست آورد.

    از آب مقطر به دست آمده در آزمایشگاههای شیمی بطور گسترده استفاده می‌شود همچنین آب مقطر استریل شده در تزریقات کاربرد فراوانی دارد. آب مقطر مانند آب آشامیدنی گوارا نمی‌باشد. زیرا مقداری از اکسیژن محلول و همچنین برخی از یونهایی که باعث ایجاد طعم خوب آب می‌شود را از دست داده است. در تاسیسات آب شیرین کن بعد از اینکه آب شور را تقطیر کرده و آب مقطر تولید می‌کنند طی فرآیندهایی که روی آب انجام می‌دهند طعم آن را بهبود بخشیده و برای نوشیدن مناسب می‌سازند.

    برخی خواص آب مقطر :
    Ph آب مقطر خنثی و در حدود 7 می‌باشد. رسانایی ویژه آن (عکس مقاومت) بسیار کم می‌باشد. زیرا رسانایی الکتریکی آب با انحلال نمکها در آن افزایش می‌یابد. دمای جوش آن پایینتر از آبهای طبیعی می‌باشد و به علت عدم وجود مواد محلول خاصیت خورندگی ندارد.


  4. #34
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض

    مطالبی در مورد جدول مندلیف

    مندلیف و لوتار میردر موردخواص عنصرها و ارتباط انها بررسی های دقیق تری انجام دادند و در سال ۱۸۶۹م به این نتیجه رسیدند که خواص عنصرها تابعی تناوبی از جرم آنهاست.

    به این معنا که اگر عنصرها را به ترتیب افزایش جرم اتمی مرتب شوند نوعی تناوب در انها اشکار میگرددوپس ازتعداد معینی از عنصرها عنصرهایی با خواص مشابه خواص پیشین تکرار می شوند .
    مندلیف در سال ۱۸۶۹ بر پایه ی قانون تناوب جدولی از ۶۳عنصر شناخته شده ی زمان خود منتشر کرد .در فاصله ی بین سالهای ۱۸۶۹ تا ۱۸۷۱م مندلیف هم مانند لوتار میر با بررسی خواص عنصرها و ترکیب های انها متوجه شد که تغییرهای خواص شیمیا یی عنصرها مانند خواص فیزیکی انها نسبت به جرم اتمی روند تناوبی دارد.از این رو جدول جدیدی در ۸ ستون و۱۲سطر تنظیم کرد.او با توجه به نارسایی های جدول نیو لندز ولوتار میر و حتی جدول قبلی خود جدولی تقریبابدون نقص ارایه دادکه فراگیر وماندنی شد.
    شاهکارهای مندلیف در ساخت شهرک عناصر:
    روابط همسایگی:دانشمندان پیش از مندلیف در طبقه بندی عناصر هر یک را جداگانه و بدون
    وابستگی به سایر عناصر در نظر می گرفتند.اما مندلیف خاصیتی را کشف کرد که روابط بین عنصرها را به درستی نشان میدادو ان را پایه تنظیم عناصر قرار داد.


  5. #35
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض

    وسواس وی:او برخی از عناصر را دوباره بررسی کرد تا هر نوع ایرادی را که به نادرست بودن جرم اتمی از بین ببرد.در برخی موارد به حکم ضرورت اصل تشابه خواص در گروهها را بر قاعده افزایش جرم اتمی مقدم شمرد.
    واحدهای خالی:در برخی موارد در جدول جای خالی منظور کردیعنی هر جا که بر حسب افزایش جرم اتمی عناصر باید در زیر عنصر دیگری جای می گرفت که در خواص به ان شباهتی نداشت ان مکان را خالی می گذاشتو ان عنصر را در جایی که تشابه خواص رعایت میشد جای داد.این خود به پیش بینی تعدادی ا زعنصرهای ناشناخته منتهی شد.
    استقبال از ساکنان بعدی:مندلیف با توجه به موقعیت عنصرهای کشف نشده و با بهره گیری از طبقه بندی دوبرایزتوانست خواص انها را پیش بینی کند.برای نمونه مندلیف در جدولی که در سال ۱۸۶۹ تنظیم کرده بودمس و نقره وطلا را مانند فلزی قلیایی در ستون نخست جا داده بود اما کمی بعد عناصر این ستون را به دو گروه اصلی و فرعی تقسیم کرد.سپس دوره های نخست و دوم و سوم هر یک شامل یک سطر و هر یک از دوره های چهارم به بعد شامل دو سطر شده وبه ترتیب از دوره های چهارم به بعد دو خانه اول وشش خانه اخر از سطر دوم مربوط به
    عناصر اصلی ان دوره و هشت خانه باقی مانده ی سطر اول و دو خانه اول سطر دوم مربوط به عناصر فرعی بود
    ساخت واحد مسکونی هشتم:مندلیف با توجه به این که عناصراهن وکبالت ونیکل وروتینیم ورودیم وپالادیم واسمیم وایریدیم وپلاتینخواص نسبتا با یکدیگر دارند این عناصر را در سه ردیف سه تایی و در ستون جداگانه ای جای دادو به جدول پیشین خود گروه هشتم ا هم افزود
    در ان زمان گازهای نجیب شناخته نشده بوداز این رودر متن جدول اصلی مندلیف جایی برای این عناصر پیش بینی نشد. پس از ان رامسی و رایله در سال ۱۸۹۴ گاز ارگون را کشف کردند و تا سا ل ۱۹۰۸ م گازهای نجیب دیگرکشف شد و ظرفیت شیمیایی انها ۰ در نظر گرفته شدو به گازهای بی اثر شهرت یافتند

  6. #36
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض

    آاسانسور مندلیف به سوی آسمان شیمی :
    جدول مندلیف در تنظیم و پایدار کردن جرم اتمی بسیاری از موارد مندلیف نادرست بودن جرم اتمی برخی از عناصر را ثابت و برخی دیگر را درست کرد .جدول تناوبی نه تنها به کشف عنصرهای ناشناخته کمک کرد بلکه در گسترش و کامل کردن نظریه ی اتمی نقش بزرگی بر عهده داشت و سبب اسان شدن بررسی عناصر و ترکیب های آنها شد.
    مجتمع نیمه تمام:
    جدول تناوبی با نارسایی هایی همراه بود که عبارتند از :
    ۱-جای هیدروژن در جدول بطور دقیق مشخص نبود .گاهی ان را بالا ی گروه فلزهای قلیایی و گاهی بالای گروه های گروه هالوژن ها جا میداد.
    ۲-در نیکل و کبالت که جرم اتمی نزدیک به هم دارند خواص شیمیایی متفاوت است و با پایه قانون تناوبی ناسازگاری دارد.
    ۳-کبالت را پیش از نیکل و همچنین تلور را پیش از ید جای داد که با ترتیب صعودی جرم اتمی هم خوانی نداشت .با پیش رفت پژوهش ها و با کشف پرتوایکس و عنصرهاو بررسی دقیق طیف انها عدد اتمی کشف و اشکار شد و عناصر بر حسب افزایش عدد اتمی مرتب و
    نار سایی های جزیی موجود در جدول مندلیف از بین رفت .زیرا تغییرات خواص عناصر نسبت به عدد اتمی از نظم بیشتری برخوردارست تا جرم اتمی انها .
    ۴سال پس از نشر جدول مندلیف بوابو در ات به روش طیف نگاری اکا الومینیوم را کشف کرد و گالیم نامید و ۴ سال بعد نیلسون اکا بور را کشف کرد و اسکاندیم نامید و هفت سال بعد ونیکلر هم اکا سیلسیم را از راه تجربه طیفی کشف کرد و ان را ژرمانیم نامید.
    تغییرات خواص عناصر در دوره ها و گروههای جدول:
    ۱-تغییرات شعاع اتمی :در هر گروه با افزایش عدد اتمی شعاع اتمی افزایش می یابد ودر هر دوره با افزایش عدد اتمی شعاع اتمی به تدریج کوچکتر می گردد.
    ۲-تغییرات شعاع یونی :شعاع یون کاتیون هر فلز از شعاع اتمی ان کوچکتر و شعاع هر نا فلز از شعاع اتمی ان بزرگتر است.به طور کلی تغییرهای شعاع یونی همان روند تغییرات شعاع اتمی است.
    ۳-تغییرات انرژی یونش: در هر دوره با افزایش عدد اتمی انرژی یونش افزایش
    می یابد و در هر گروه با افزایش لایه های الکترونی انرژی یونش کاهش می یابد.
    ۴-تغییرات الکترون خواهی :در هر دوره با افزایش عدد اتمی انرژی الکترونخواهی افزایش می یابدودر هر گروه با افزایش عدد اتمی اصولا انرژی الکترون خواهی از بالا به پایین کم می شود .
    ۵-تغییرات الکترونگاتیوی:در هر دوره به علت افزایش نسبتا زیا د شعاع اتمی الکترونگاتیوی عناصر کم میشود و در هر دوره به علت کاهش شعاع اتمی الکترونگاتیوی عناصر افزایش می یابد .
    ۶-تغییرتعدادالکترونهای لایه ظرفیتوعدد اکسایش:در هر دوره از عنصری به عنصر دیگریک واحد به تعداد الکترون ها ی ظرفیت افزوده میشود و تعداد این الکترونها و عدد اکسایش در عنصرهای هر گروه با هم برابرند.
    ۷-تغییرات پتانسیل الکترودی :در ازای هردوره با افزایش عدد اتمی توانایی کاهندگی عنصرها کاهش می یابد و توانایی اکسیدکنندگی انها افزایش می یابد .از این روفلزهایی که در سمت چپ دوره ها جای دارندخاصیت کاهندگی ونا فلزهایی که در سمت راست دوره ها جای دارندتوانایی اکسید کنندگی دارند.در موردعناصر یک گروه توانایی اکسید –کنندگی با افزایش عدد اتمی وپتانسیل کاهش می یابد.
    ۸-تغییرات توانایی بازی هیدروکسید:توانایی بازی هیدروکسیدعناصر در گروهها ازبالا به پایین افزایش می یابد اما در دوره از سمت چپ به راست رو به کاهش است.
    ۹-تغییرات دما وذوب یا جو ش:در هر دوره دمای ذوب و جوش تا اندازه ای به طورتناوبی تغییر می کند ولی این روندمنظم نیست و در موردعناصرگروهها نیز روندواحدی وجود ندارد.

  7. #37
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض

    كروژن چيست ؟

    کروژنها مواد آلی رسوبی شکننده‌ای هستند که در حلالهای مواد آلی غیرمحلول هستند و دارای ساختمان پلیمری می‌باشند. مواد آلی شکننده‌ای که در حلالهای آلی محلول باشند، بیتومن نامیده می‌شوند. ولی کروژنها را می‌توان توسط اسیدهایی مانند hcl و hf از سنگهای رسوبی باز پس گرفت. همچنین ممکن است توسط روش دانسیته و استفاده از مایعات سنگین بتوان کروژن را جد اساخت. چون کروژن نسبت به کانیهای دیگر سبک بوده و وزن مخصوص کمتری دارد.

    روشهای مطالعه کروژن
    تمرکز کروژن بوجود آمده را می‌توان با میکروسکوپهای با نور عبوری یا انعکاسی مورد بررسی قرار داد و هویت بیولوژیکی و منشا و نحوه بوجود آمدن اولیه آنها را مطالعه نمود. همچنین با استفاده از میکروسکوپهای با نور ماورای بنفش و مشاهده کردن رنگهای فلورسانس ، اجزا اصلی تشکیل دهنده کروژنها را مشخص ساخت و از اسپکتروسکوپهای مادون قرمز نیز جهت بررسی ترکیب شیمیایی و ساختمانی کروژنها کمک گرفت.

    تجزیه کروژن
    مولکولهای بزرگ و پیچیده کروژن به سختی قابل تجزیه بوده ولی در اثرحرارت دادن در اتمسفر به ذرات کوچکتری شکسته می‌شوند که بعدا آنها را می‌توان توسط دستگاههای کروماتوگرافی گازی و اسپکترومترهای جرمی تجزیه نمود.
    تغییرشکل کروژنهای مدفون در اثر افزایش حرارت تبدیل کروژنها به نفت و گاز فرایندی است که به درجه حرارت بالایی نیازمند است. برای شروع تبدیل مواد حیوانی و گیاهی آلی به هیدروکربنها درزیرفشار 1-2 کیلومتر رسوب ، حرارتی درحدود 70-50 درجه سانتیگراد لازم است. درجه حرارت نهایی برای این تبدیل که بلوغ یا مچوراسیون نامیده می‌شود. حتی به بیش از 150 درجه سانتیگراد می‌رسد. لازم به ذکر است که در نواحی با گرادیان زمین گرمایی بیشتر ، به عنوان مثال نواحی با جریان حرارتی بالا ، امکان دارد مواد آلی درعمق کمتری به درجه بلوغ (مچوریتی) برسند.

    تاثیر فشار بر ساختمان کروژنها
    با افزایش حرارت در اثر افزایش بار رسوبی فوقانی عاملهای باندی c- c مولکولهای آلی موجود در کروژن شکسته می‌شوند و گاز نیز در این مرحله تشکیل می‌شود. بنابراین با بالا رفتن حرارت همگام با افزایش فشار ، باندهای c- c بیشتری در کروژن و مولکولهای هیدروکربنی که قبلا تشکیل شده بودند، شکسته می‌شود. این شکستگی راهنمایی برای تشکیل هیدروکربنهای سبک تر ، از زنجیره‌های هیدروکربنی طویل و از کروژن است. جدا شدن متان و دیگر هیدروکربنها سبب می‌شود که کروژن باقیمانده نسبتا از کربن غنی شود. زیرا در آغاز ، کروژنهای تیپ 1و 2 نسبت h/c برابر 1.7 و 1.3 دارند.

    دیاژنز کروژن
    شروع دیاژنز با درجه حرارت 70-60 صورت می‌گیرد و ازدیاد درجه حرارت تا زمانی که نسبت h/c =0.6 و نسبت o/c =0.1 باشد تا حدود 150 درجه سانتیگراد ادامه می‌یابد. در درجه حرارتهای بیشتر تمام زنجیره‌های هیدروکربنی طویل تقریبا شکسته می‌شوند و بنابراین باقیمانده آن بطور کلی تنها از گاز متان (گازخشک) می‌باشد و ترکیب کروژن تدریجا به سمت کربن خالص میل خواهدکرد. ( h/c=0 )

    محاسبه مچوریتی
    محاسبه مچوریتی (به بلوغ رسیدن) سنگ مادر برای پیشگویی اینکه چه سنگهای مادری برای تولید نفت بقدر کافی رسیده هستند و همچنین جهت محاسبه کامپیوتری و طرح ریزی بکار می‌رود که اینها یک قسمت مهم از آنالیز حوضه برای اکتشافات نفت می‌باشند و مهمترین بهره از این محاسبات تعیین تاریخچه فرونشینی است که از ثبت چینه شناسی و تخمین گرادیان زمین گرمایی مشتق می‌شود. بنابراین تاریخچه فرونشینی تابعی از زمان زمین شناسی می‌باشد.

    انواع کروژن
    بطور کلی سه نوع کروژن قابل تشخیص است. وجه تمایز این سه نوع کروژن به نوع ماده آلی تشکیل دهنده و ترکیب شیمیایی آن بستگی دارد.

    کروژن نوع اول :
    این نوع کروژن دارای منشا جلبکی بوده و نسبت هیدروژن به کربن موجود در آن از سایر کروژنها بیشتر می‌باشد ( نسبت هیدروژن به کربن حدود 1.2 تا 1.7 است ).
    کروژن نوع دوم :
    کروژن نوع دوم یا لیپتینیک‌ها نوع حد واسط کروژن محسوب می‌شود. نسبیت هیدروژن به کربن نوع دوم ، بیش از 1 می‌باشد. قطعات سر شده جلبکی و مواد مشتق شده از فیتو پلانکتونها و زئوپلانکتونها متشکلین اصلی (کروژن ساپروپل) کروژن نوع دوم است.
    کروژن نوع سوم :
    کروژن نوع سوم یا هومیک دارای نسبت هیدروژن به کربن کمتر از 84 % می‌باشد. کروژن نوع سوم از لیگنیت و قطعات چوبی گیاهان که در خشکی تولید می‌شود به وجود می‌آید.

    مراحل تشکیل کروژن
    مواد آلی راسب شده در حوضه‌های رسوبی با گذشت زمان در لابه‌لای رسوبات دفن می‌شود. ازدیاد عمق دفن‌شدگی با افزایش فشار و دمای محیط ارتباط مستقیم دارد. تی‌سوت ( 1977) تحولات مواد آلی در مقابل افزایش عمق را تحت سه مرحله به شرح زیر تشریح می‌کند :

    مرحله دیاژنز
    تحولات مواد آلی در مرحله دیاژنز در بخشهای کم عمق‌تر زیر زمین و تحت دما و فشار متعارف انجام می‌شود. این تحولات شامل تخریب بیولوژیکی توسط باکتریها و فعل و انفعالات غیر حیاتی می‌باشد. متان ، دی‌اکسید کربن و آب از ماده آلی جدا شده و مابقی به صورت ترکیب پیچیده هیدروکربوری تحت عنوان کروژن باقی می‌ماند. در مرحله دیاژنز محتویات اکسیژن ماده آلی کاسته می‌شود ولی نسبت هیدروژن به کربن ماده‌ آلی کم و بیش بدون تغییر باقی می‌ماند.
    تاثیر مرحله دیاژنز در بوجود آمدن هیدروکربنها :
    در اوائل مرحله دیاژنز مقداری از مواد جامد از قبیل خرده فسیلها و یا کانیهای کوارتز و کربنات کلسیم و ، ابتدا حل شده بعدا از آب روزنه‌ای اشباع گشته ، سپس به همراه سولفورهای آهن - سرب و روی و مس و غیره دوباره رسوب می‌کنند. در این مرحله مواد آلی نیز به سوی تعادل می‌روند. یعنی اول در اثر فعالیت باکتریها مواد آلی متلاشی شده و بعدا همزمان با سخت شدن رسوبات (سنگ شدگی) این مواد نیز پلیمریزه شده و مولکولهای بزرگتری را تشکیل داده سپس به تعادل می‌رسند که در این حالت تعادل آنها را کروژن می‌نامند.
    مرحله کاتاژنز
    تحولات مواد آلی در مرحله کاتاژنز در عمق بیشتر تحت دمای زیادتر صورت می‌گیرد. جدایش مواد نفتی از کروژن در مرحله کاتتاژنز به وقوع می‌پیوندد. در ابتدا نفت و سپس گاز طبیعی از کروژن مشتق می‌شود. نسبت هیدروژن به کربن ماده آلی کاهش یافته ولی در مقدار اکسیژن به کربن تغییر عمده‌ای صورت نمی‌گیرد.
    تاثیر مرحله کاتاژنز در بوجود آمدن هیدروکربنها : در این مرحله مواد آلی تغییرات زیادی پیدا می‌کنند و حین تغییر وضع مداوم مولکولی در کروژنها در ابتدا نفتهای سنگین ، بعدا نفتهای سبک و در آخر گازهای مرطوب تولید می‌شوند. در آخر مرحله کاتاژنز تقریبا تمامی شاخه‌های زنجیری هیدروکربنها از مولکول کروژن جدا شده و مواد آلی باقیمانده در مقایسه با زغال سنگها از نظر درجه بلوغ ، شبیه به آنتراسیت بوده و ضریب انعکاسی بیش از 2% دارند.
    مرحله متاژنز
    تحولات ماده آلی در مرحله متاژنز تحت دما و فشار بالاتر نسبت به مراحل قبلی انجام می‌شود. بقایای هیدروکربن بخصوص متان از ماده آلی جدا می‌شود. نسبت هیدروژن به کربن کاهش یافته ، به نحوی که در نهایت کربن به صورت گرافیت باقی خواهد ماند. تخلخل و تراوایی سنگ در این مرحله به حد قابل چشم پوشی می‌رسد.
    تاثیر مرحله متاژنز در بوجود آمدن هیدروکربنها :
    در مرحله متاژنز و متامورنیسم رسوبات در عمق بیشتر و تحت تاثیر حرارت و فشار بیش از حد قرار دارند. در این مرحله کانیهای رسی ، آب خودشان را از دست داده و در نتیجه تبلور مجدد در بافت اصلی سنگ تغییرات بوجود می‌آید. در این مرحله کروژن باقی مانده (موادآلی باقی مانده) تبدیل به متان و کربن باقیمانده می‌شود. این مواد را می‌توان قابل قیاس با تبدیل زغال سنگ به آنتراسیت دانست که ضریب انعکاسشان تا 4% می‌رسد. بالاخره در آخراین مرحله باقیمانده مواد آلی که به صورت کربن باقی مانده در آمده بود، تبدیل به گرافیت می‌شود.

    رسیدگی کروژن
    نفت و گاز در مرحله کاتاژنز از کروژن نیمه رسیده مشتق می‌شوند. اشتقاق هیدروکربور از کروژن نارس امکان پذیر نیست. به دنبال رسیدگی کروژن در ابتدا نفت و سپس گاز طبیعی از کروژن جدا می‌شود. هنگامی که کروژن کاملا برسد دیگر نفت و گازی از آن به وجود نمی‌آید. رسیدگی کروژن به دما ، زمان و احتمالا فشار بستگی دارد.
    تولید عمده نفت از کروژن در دمای 60 تا 120 درجه سانتیگراد صورت می‌گیرد. تولید عمده گاز از کروژن در دمای 120 تا 225 درجه سانتیگراد است. کروژن در دمای بالاتر از 230 درجه سانتیگراد کلیه مواد هیدروکربوری خود را از دست می‌دهد و تنها به صورت گرافیت باقی می‌ماند.


  8. #38
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض

    مخازن نفتي
    در زمین شناسی نفت یکی از تخصصهای مهم که توسط زمین شناسان و مهندسین حفاری بسیاری مورد توجه قرار گرفته است، نحوه استخراج نفت از چاه می‌باشد
    . که در این رابطه ابتدا انرژی طبیعی موجود در مخزن را نسبتا به نوع سنگ ذخیره (ماسه‌ای - کربناتی) مشخص می‌نمایند و سپس نسبت به برداشت کامل از چاه با بکار بردن روشهای پر هزینه و نیز تزریق بخار یا گاز نظر می‌دهند.

    انرژی موجود در مخازن
    در غالب مخازن نفت و گاز موجود در مخازن ، تحت فشار بخصوص آن مخزن قرار دارند. یعنی وقتی که چاهی در یک مخزن نفتی حفر می‌شود در نتیجه فشار موجود در چاه ، نفت بالای چاه و حتی تا سطح زمین نیز می‌تواند بالا بیاید که به اینگونه مخازن در اصطلاح مخازن خود تولید می‌گویند.

    فشار مخازن نفتی
    آب و نفت از نظر حجمی یک ضریب بالنسبه پایینی با همدیگر دارند، بدین جهت هنگام استخراج نفت ، فشار چاه به سرعت پایین می‌آید و هر قدر مخزن کوچکتر باشد این افت فشار سریعتر صورت می‌گیرد و از این افت فشار می‌توانیم اطلاعات هم در مورد اندازه مخزن و ارتباط داخلی آن در طول بهره برداری تهیه نماییم.

    گاز جهنده
    در این رابطه چون گاز نسبت به نفت قدرت گسترش زیادی دارد در نتیجه کاهش فشار مخزن ممکن است گاز مایع را به حالت گازی شکل در آورد و گاز حل شده در نفت از حالت محلول خارج می‌شود. لذا حجم قسمت گاز افزایش می‌یابد و این حالت به نگهداری و تنظیم فشار چاه در موقع استخراج به مدت طولانی کمک می‌کند به این گاز اصطلاحا گاز جهنده می‌گویند.

    سفره تحت فشار
    فشار آب را در مخازن بزرگ بیشتر نگهداری می‌کنند، چون حجم بزرگتری دارند و آب در بهترین وضعیت حالتی است که در مخزن تحت فشار باشد که به آن اصطلاحا سفره تحت فشار می‌گویند.

    آبهای جهنده
    در طول بهره برداری از مخازن نفتی فشار ثابتی خواهیم داشت. زیرا آبهای جدید جای نفت استخراج شده را گرفته و این فشار را تأمین می‌کنند که به آنها در اصطلاح آبهای جهنده می‌گویند. از وجود آب جهنده برای خنثی کردن افت فشار در مخازن نفتی استفاده می‌کنند و در صورت کمبود آن از طریق چاههای تزریقی ویژه آب یا گاز به داخل مخازن تزریق می‌کنند و اگر هیچگونه انرژی جهت تولید فشار در مخزن نفتی موجود نباشد در آنصورت باید نفت به بیرون پمپاژ شود.

    نفوذپذیری در مخازن نفتی
    اگر چند نوع فاز گازی یا مایع در سنگهای ذخیره وجود داشته باشد، بطوری که قبلا شرح داده شد، نفوذ پذیری از اندازه خلل و فرج و تخلخل تبعیت نخواهد کرد بلکه به میزان ارتباط سایر فازها نیز بستگی خواهد داشت. نفوذ پذیری مؤثر در واقع نفوذ پذیری یک فاز در ارتباط با سایر فازها را برای ما نشان می‌دهد. مثلا اگر در خلل و فرج 40 درصد آب و 60 درصد نفت موجود باشد در آنصورت نفوذ پذیری نفت کمتر از زمانی خواهد بود که تمامی خلل و فرج از نفت پر شود، یعنی 100 درصد اشباع از نفت باشد.

    ارتباط بین آب و نفت استخراجی از مخازن
    اگر در یک مخزن نفتی کمتر از 40 تا 50 درصد آب باشد (یعنی درجه اشباع شدگی نفت بین 50 تا 60 درصد باشد) در آنصورت از مخزن تنها نفت استخراج می‌گردد. اگر درصد اشباع آب بین 45 تا 85 درصد باشد در آن صورت نفت و آب استخراج می‌شوند. و اگر درصد اشباع آب بین 85 تا 100 درصد باشد در آنصورت فقط از مخزن آب استخراج می‌گردد.

    دلیل این حالتها
    چون آب سطح کانیها را خیلی راحتتر از نفت خیس می‌کند، بطوری که ممکن است بیشتر از 30 الی 40 درصد آب در اطراف دانه‌های کانیها موجود باشد و وقتی که مقدار آن بین 40 الی 50 درصد و یا بیشتر برسد در آنصورت نمی‌توانیم به مدت طولانی فاز پیوسته نفت را داشته باشیم و قطرات نفت همراه با آب می‌توانند جریان پیدا کنند و اگر مقدار نفت کم باشد در اینصورت نفت بصورت قطرات کوچک در خلل و فرج سنگ ذخیره باقی خواهد ماند و آب از کنار آن عبور خواهد نمود.

    سنگهای ذخیره کربناتی
    از سنگهای ذخیره نفت و گاز از نوع کربناتی تا زمانی که درجه اشباع نفتی بین 30 الی 40 درصد و بیشتر باشد چون چسبندگی گاز کمتر است و خیلی راحت از کنار آب عبور می‌کنند، لذا می‌توان فقط گاز استخراج نمود. و در درجه بالاتری از اشباع شدگی ، گاز همراه نفت جریان یافته و در درجه اشباع نفتی حدود 55 درصد ، نفت و گاز نفوذ پذیری مشابهی خواهند داشت.

  9. #39
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض

    منشا تشکيل نفت
    قبلا در مورد منشا نفت دو نظریه ارائه می‌شد:
    تشکیل نفت از منشا آلی و از منشا غیر آلی. دلایل ارائه شده در مورد منشا غیر آلی ( معدنی) نفت بسیار ضعیف بوده و امروزه باطل شناخته می‌شود. همه محققین این عقیده را دارند که کانسارهای بیتومن‌های طبیعی از عناصر آلی و در داخل تشکیلات رسوبی بوجود می‌آیند. البته تشکیل متان به صورت معدنی که در فضا و در چندین سیاره دیگر یافت می‌شود استثنایی در این مورد است. معمولا متان معدنی نمی‌تواند تشکیل ذخایر عمده گازی را بدهد.

    حمل و ته نشست مواد آلی در دریا
    وقتی که نفت از مواد آلی مشتق شد مهم فهمیدن چگونگی ته نشست آن مواد در داخل رسوبات دریایی است. در هر سال حدود 5.110 تن مواد آلی در اقیانوسهای جهان تولید می‌شوند که اکثریت آنها در داخل رسوبات دریایی مدفون می‌شوند. مواد حاصل از فرسایش سنگها در خشکی به داخل اقیانوسها حمل می‌شوند و در مناطق ساحلی خصوصا در دلتاهای رودخانه‌ای بیشتر از سایر جاها رسوب می‌کنند. همچنین مقدار مشابهی از مواد گیاهی حاصل از خشکی نیز در داخل اقیانوسها انباشته می‌شوند.

    فیتوپلانکتونها
    بیشتر فرآوردهای بیولوژیکی تا اعماق 50 - 30 متری اقیانوسها وجود دارند و تمامی رویش فیتوپلانکتونها در اعماقی که نور خورشید جهت انجام فرآیند فتوسنتز به آنجا می‌رسد، صورت می‌گیرد (اعماق 150 - 100 متری). فیتوپلانکتونها تولید کننده‌های مواد غذایی برای سایر موجودات اقیانوس هستند. زئوپلانکتونها از فیتوپلانکتونها تغذیه کرده بنابراین ازدیاد تنها در جاهایی صورت می‌گیرد که تولیدات فیتوپلانکتونی زیاد باشد موجوداتی که می‌میرند، به اعماق دریا فرو می‌روند و ممکن است در اثر پوسیده شدن آزاد شدن مواد مغذی گردند که این چرخه ، در اعماق زیاد صورت می‌گیرد.

    آب
    در نواحی قطبی خصوصا در جاهای سرد ، آبهای با دانسیته زیاد به اعماق فرو رفته و به سمت عرضهای جغرافیایی پایین جاری می‌شوند. در نواحی با بادهای خشکی غالب ، به عنوان مثال در کرانه‌های غربی قاره‌ها چاه‌های آرتزین قوی وجود دارند که حاوی آب غنی از مواد مغذی به مانند اعماق اقیانوس‌ها هستند که این امر تهیه مواد اساسی خصوصا تولید مواد اولیه آلی با درصد بالا را موجب می‌شوند. بهترین مثال در این مورد ساحل غربی آمریکای جنوبی می‌باشد.

    انرژی نفت
    انرژی موجود در نفت که ما امروزه از آن استفاده می‌کنیم قبلا به صورت انرژی خورشیدی ذخیره شده بود. در عمل فتوسنتز دی‌اکسید کربن و آب با انرژی کم به هیدرات کربن با انرژی زیاد تبدیل می‌گردد (مانند گلوکز)
    CO2 + H2O
    CH2O + O2
    که در این رابطه CH2O هیدرات کربن مانند گلوکز است. این انرژی می‌تواند مستقیما توسط موجودات برای عمل تنفس استفاده شود که در اثر فرآیند معکوس ، هیدراتهای کربن مجددا به دی‌اکسید کربن و آب شکسته می‌شوند که اکسیداسیون 100 گرم گلوکز 375 کیلوکالری انرژی آزاد می‌کند.

    فتوسنتز و ذخیره انرژی در مواد آلی
    مقداری از انرژی انباشته شده در گیاهان در طول عمل فتوسنتز در اثر تنفس تلف می‌شوند و هر یک از تولیدات هیدرات کربن که در سوختن استفاده نمی‌شود، می‌تواند بصورت گلوکز یا سلولز در دیواره سلولی ذخیره شود. فتوسنتز همچنین منبع بیوشیمیایی برای سنتز لیپدو پروتئین است.
    نیتروژن و فسفر و بسیاری از عناصر واسطه برای تشکیل مواد آلی (پروتوپلاسم) در زندگی موجودات ضروری می‌باشد و کمبود این مواد در دریا باعث مرگ تعداد بسیاری زیادی از جانداران می‌شود که این عمل به صورت انعکاسی و زنجیره‌ای توسط SH2 مسموم کننده حاصل از اجساد جانداران مرده محیط انجام پذیرد. باید گفت که پروتئینها ملکولهای پیچیده بزرگی هستند که از آمینو اسیدهای متراکم ساخته شده‌اند.
    مانند گلیسین به فرمول : CH2NH2COOH
    مواد زنده
    اجزای آلی
    هیدراتهای کربن
    نور خورشید
    پروتوپلاسم
    پروتئین
    سلولز
    زئوپلانکتون
    لیپید
    گلوکز
    مواد مغذی
    نشاسته
    فسفر
    نیتروژن و مهمترین مواد آلی تشکیل دهنده نفت جلبکهای پلانکتونیک (پلانکتونی) ، مهمترین شرکت کننده‌هایی از مواد آلی هستند که در تشکیل نفت دخالت دارند، در این میان دیاتومه‌ها مهمترین آنها می‌باشند چون دارای اسکلت سیلیسی بوده و بخش آلی آنها شامل تقریبا 31 درصد هیدرات کربن و 48 - 24 درصد پروتئین و 15 - 2 در لیپید است.
    همچنین دینوفلاگلاتها Dinoflagellaies ، ترکیب مشابه‌ای با اینها دارند.

    زئوپلانکتونها Zeoplanciones
    زئوپلانکتونها مواد آلی غنی از لیپید را می‌سازند و مشتق شده‌اند از :
    رادیولارها (Radiolarites ) :

    با پوسته سیلیسی ، بخش وسیع ، بخصوص در آبهای نواحی گرمسیر.
    فرامینیفرها (Foraminiferes) :

    با پوسته کربنات کلسیم‌دار مانند (گلوبیژرین).
    پتروپودها (Detropodes) :

    دارای عضو پا مانند هستند که به صورت زائده نرم آویزان است و حاوی پوسته کربناتی هستند.
    در زنجیره غذایی این زئوپلانکتونها ، توسط سخت پوستان خورده می‌شوند که آنها نیز به نوبه خود توسط ماهیها خورده می‌شوند. در زنجیره غذایی طبیعی هر بند را یک سطح تروپیک می‌نامند و هر بند در طول کاهش زنجیره تراکم زیستی ضریبی از 10 دارد.
    دلتاها و تشکیل نفت
    در مردابهای ساحلی خصوصا دلتاها ، تولیدات زیاد مواد آلی سبب رویش و شکل گرفتن گیاهان و درختان می‌شود که در بقایای این گیاهان بزرگ امکان دارد تورب تشکیل شده و با قرار گرفتن در عمق بیشتر و دگرگون شدن به لیگنیت و زغالهای بیتومینوز تبدیل گردد که چنین ته نشستهایی یک منبع ذخیره نفت و گاز نیز می‌باشند. همچنین مواد گیاهی شامل چوب که به صورت شناور در رودخانه‌ها حمل می‌شوند در محیطهای دلتایی نزدیک سواحل پس از کاسته شدن سرعت آب ته نشین شده و به ته آب فرو می‌روند.

    اسید هومیک C2OHOO6
    فرآورده‌های آب رودخانه حاوی مواد غذایی معدنی و همچنین شامل مقدار قابل ملاحضه‌ای مواد آلی می باشند که از این مواد مخصوصا اسید هومیک و مواد مشابهی که در اثر تجزیه مواد گیاهی حاصل می‌شوند می‌توان نام برد. اسید هومیک به صورت ضعیف در آب حل می‌شود و نقش قابل ملاحظه‌ای را در بوجود آوردن منابع هیدروکربنی عهده‌دار است.


  10. #40
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض

    نفتگير دياپيري



    نفتگیرهای دیاپیری حاصل نفوذ صعودی رسوبات با وزن مخصوص کمتر به درون لایه‌های بالاتر می‌باشد. اکثر نفتگیرهای دیاپیری به واسطه نفوذ نمک به درون لایه‌های بالاتر بوجود آمده است. مواد رسی تحت فشار نیز ممکن است به سمت بالا صعود کنند. وزن مخصوص نمک 2.03 گرم بر سانتیمتر مکعب می‌باشد. رسها و ماسه‌های تازه دفن شده دارای وزن مخصوص کمتر از نمک بوده که با افزایش عمق دفن شدگی متراکم می‌شود قطعه‌های بین دانه‌ای آن کاهش یافته و در نهایت به وزن مخصوص آن افزوده می‌شود.
    وزن مخصوص رسوبات تازه دفن شده در عمق 800 تا 1200 متری از نمک بیشتر است. نمک در این مرحله سعی دارد به طرف لایه‌های بالایی حرکت کند. حرکت صعود کننده نمک ممکن است با فعالیت تکتونیکی همراه شود. صعود نمک به بالا ممکن است سبب خم شدگی لایه‌های فوقانی شده و یا کاملا لایه‌های بالایی را بشکافد. نمک بعضی مواقع به سطح زمین رسیده و در نواحی خشک سبب تشکیل گنبد نمکی می‌شود.

    تاثیرهای ناشی از حرکت صعود کننده نمک به صورت گوناگون از قبیل برگشتگی لایه‌های کناری و مجاور توده نمک ، گسل خوردگی ، ایجاد بلوکهای مثلثی و تکرار این مورد در بالها و در بخش فوقانی توده نمک بوده که در نهایت سبب تشکیل مخازن نفت می‌شود. نفتگیرها ممکن است قطع قطع و یا تکرار شده و حداکثر تا 10 نفتگیر در مجاورت توده نمک تشکیل شود.
    ساختمانهای گنبد سنگی
    رسوبات تبخیری غالبا در حوزه‌های بسته ، گرم و در نواحی که مقدار تبخیر به مراتب از جایگزینی آب ورودی بیشتر باشد، تشکیل می‌شود. رسوبات تبخیری در بسیاری نقاط به صورت بین لایه‌ای و چرخه‌ای همراه سنگهای آهکی ، فسیلهای قرمز و سبز نیز یافت شده‌اند. هالیت ، ایندریت و ژیپس تشکیل دهندگان اصلی رسوبات تبخیری می‌باشند. سن رسوبات تبخیری از انیفراکامبرین به بعد می‌باشد. لایه تبخیری دفن شده ممکن است به صورت ستونهایی با ابعاد مختلف صدها و یا هزاران متر را از زیر زمین به سمت بالا طی کند.
    نفوذ توده های نمکی تغییر شکل، تغییر شیب. گسل خوردگی، چین خوردگی، واریختگی و غیره لایه‌ها را سبب شده و این امر در تشکیل گروهی از مخازن نفتی نقش بسزایی داشته است. حرکت رو به بالای سنگ منشا ناشی از دیاپیرسیم می‌توانند تا آن حد رسوبات را بالا آورد که رسوبات مذکور در معرض تخریب و فرسایش فیزیکی قرار گیرند. حرکت بالاآورنده سنگهای منشا توسط گنبدهای نمکی نیز سبب نازک شدگی آن سنگها شد. که ممکن است با کاهش پتانسیل گاززایی و یا نفت خیزی آنها همراه شود. علاوه بر این ، حرکت روبه بالا سبب کاهش عمق دفن شدگی رسوبات نیز می‌شود.

    پوش سنگ گنبدهای نمکی
    پوش سنگ متشکل از ایندریت ، ژیپس ، آهک ، دولومیت و گاهی سولفور می‌باشد. ایندرت بخش اصلی پوش سنگ را شامل شده و بطور مستقیم بر روی توده اصلی قرار می‌گیرد. بر روی ایندریت محدوده مختلط از ژیپس و ایندریت قرار داشته و ممکن است مقداری کلسیت نیز در روی محدود حد واسط متمرکز شود. ضخامت متوسط پوش سنگ حدود 100 الی 130 متر است.
    امروزه نظر بر این است ایندریت و آهک در واقع مواد غیر محلول و همراه نمک بوده که به تدریج با بالا آمدن نمک بر سطح آن متمرکز می شود. گاهی پوش سنگ به طرف به نحوی آویزان می شود. آویزان شدگی پوش سنگ به عواملی نظیر تغییر محور نمک در حین رشد ، افزایش وزن پوش سنگ ، فشار صعود کننده تحت نمک و گرایش آن به کنار توده نفوذی و انحلال توسط چرخش آب سنت داده می‌شود.

    منشا گنبدهای نمکی
    تئوری منشا ولکانیگی برای گنبدهای نمکی بر اساس این تئوری نمک حاصل جدایش رسوب از گازهای توده‌های نفوذی آذرین عمیقتر بوده که ، پس از این جدایش ، حرکت صعود کننده خود را آغاز کرده است. این نظریه بعدها رد شد. زیرا هیچگونه آثار نفوذی ماگما در زیر توده نفوذی نمک مشاهده نشد.

    نظریه نمک حاصل از آبهای زیرزمینی
    نمک حاصل رسوب از آب زیرزمینی به خصوص در کنار ، گسلها بوده و نفوذ توده نمک حاصل رشد بلورهای نمک آب زیرزمینی است. این نظریه هم به دلیل عدم توانایی آبهای زیرزمینی در تامین مقدار نمک مورد نیاز بی‌اعتبار شد.

    تئوری جریان مواد پلاستیکی
    امروزه نظر بر این است که نفوذ توده نمک بر اساس تئوری جریان مواد پلاستیکی ارائه شده توسط نتلتون استوار می‌باشد. بر اساس این تئوری ، نمک و رسوبات هر دو حالت مایع بسیار غلیظ با خاصیت حرکت مواد پلاستیکی را دارا هستند. وزن مخصوص نمک حدود 2.02 بوده و متر آن با افزایش عمق تغییری پیدا نمی‌کند. در اعماق زیاد با خاصیت پلاستیکی و وزن مخصوص کمتر از رسوبات هم عرض خود به حالت بحرانی رسیده و تحت تاثیر عواملی به شرح زیر از حالت بحرانی خارج شده و شروع به صعود به نواحی کم فشارتر می کند:

    ترکیب ، مشخصات ، ضخامت و ارتباط چینه‌ای سازند اصلی نمک
    دمای تشکیل نمک که بطور متوسط به ازای هر 100 متر عمق ، 3 درجه سانتیگراد افزوده می‌شود.
    فشار وارده بر نمک که به ازای هر فوت یک پوند بر اینچ افزوده می‌شود. آب محتوای نمک و سنگهای مجاور که تاثیر شدیدی بر حالت بحرانی نمک از حالت سکون به حرکت را دارا می‌باشد.
    تجمع نفت در نفتگیرهای گنبدهای نمکی تجمع نفت در پوش سنگ ، لایه‌های ماسه‌ای چین خورده فوقانی ، لایه‌های ماسه‌ای مجاور موثر از بالا آمدگی نمک و داری شیب زیاد و حاصل گسل صورت می‌گیرد. اینگونه مخازن بطور کلی دارای وسعت کم و کوچک بوده ولی می‌تواند دارای ستون نفت زیاد باشد. دستیابی به این مخازن مستلزم حفاری دقیق و نشانه روی صحیح به خصوص در نواحی آویزان شده می‌باشد. فشار در مقایسه با عمق گاهی غیر عادی و بسیار زیاد است. نفوذ گاز به درون لایه‌های مجاور به خصوص در سازنده‌‌های کم عمقتر حاوی نفت سنگین متداول می‌باشد.


صفحه 4 از 13 نخستنخست 12345678 ... آخرینآخرین

برچسب ها برای این تاپیک

علاقه مندی ها (بوک مارک ها)

علاقه مندی ها (بوک مارک ها)

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست در پست خود ضمیمه کنید
  • شما نمیتوانید پست های خود را ویرایش کنید
  •  

http://www.worldup.ir/