صفحه 2 از 4 نخستنخست 1234 آخرینآخرین
نمایش نتایج: از شماره 11 تا 20 , از مجموع 35

موضوع: گزارش کار شیمی

  1. #11
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض تست های شناسایی آمينها

    آمینها و سایر ترکیبات حاوی نیتروژن از جمله فراوانترین مولکولهای آلی هستند. همه آمینها خصلت بازی دارند (آمینهای نوع اول و دوم می‌توانند به عنوان اسید هم عمل کنند) ، پیوند هیدروژنی تشکیل می‌دهند، و در واکنشهای جانشینی به عنوان هسته دوست عمل کنند. پس در بسیاری از جنبه‌ها شیمی آمینها با شیمی الکلها و اترها شباهت دارد. ولی تفاوتهایی هم در فعالیت دارند، زیرا الکترونگاتیوتیه نیتروژن کمتر از اکسیژن است.
    بسیاری از ترکیبات فعال بیولوژیکی حاوی نیتروژن هستند. بسیاری از آمینهای ساده به عنوان دارو مصرف می‌شوند. علاوه بر کاربرد آمینها در داروسازی و تفکیک انانیتومرها ، آمینها موارد استفاده گوناگونی در صنعت دارند. هگزا متیلن دی آمین (HMDA) یک آمین ، با اهمیت تجاری است. که ماده اولیه تهیه صنعتی نایلون است. این ماده با هگزان دی اوییک (آدپیک) اسید ، کوپلیمر می‌شود و نایلون 6 ، 6 ایجاد می‌گردد. از این نایلون جوراب ، جامه‌های کشباف و میلیونها تن الیاف نساجی ساخته می‌شود.
    5856d6f2f6
    برای شناسایی آمینها از تست های زیر استفاده می شود ، علاوه بر این انحلال پذيري و ويژگي بازي آمينها یکی از بهترين راههای شناسايي آنها ست. ( می توانید به بخش حلالیت مراجعه کنید).
    1- آزمايش هينزبرگ
    1/0 ميلي ليتر از آمين مايع يا 1/0 گرم از آمين جامد و 2/0 گرم پارا – تولوئن سولفونيل کلريد و 5 ميلي ليتر محلول سديم هيدروکسيد 10 % را در يک لوله آزمايش کوچک بريزيد. درب لوله را کاملاً ببنديد و براي 3-5 دقيقه آنرا تکان دهيد. سپس درب لوله را برداريد و در حاليکه آنرا تکان مي دهيد براي يک دقيقه بوسيله حمام بخار حرارت دهيد. بعد لوله را بگذاريد سرد شود و يک قطره از آنرا روي کاغذ PH قرار دهيد چنانچه PH آن بازي نيست، مقدار بيشتري سديم هيدروکسيد اضافه نماييد تا به PH بازي برسد. چنانچه رسوب تشکيل شود، مخلوط بازي را با افزايش 5 ميلي ليتر آب رقيق نماييد و خوب تکان دهيد. اگر رسوب نامحلول باشد، ممکن است سولفون آميد دو استخلافي تشکيل شده باشد که در اينصورت آمين نوع دوم است. ( توجه : رسوب نامحلول ممکن است پارا – تولوئن سولفونيل کلريد شد که در واکنش شرکت نکرده است ). اگر بعد از رقيق کردن مخلوط رسوبي باقي نماند، يا اگر از ابتدا تشکيل نشده بود، به دقت به محلول هيدروکلريک اسيد 5 % اضافه نماييد و با کاغذ ليتموس PH آن را براي اسيدي بودن بررسي کنيد. اگر در اين مرحله رسوب ايجاد شد، دليل بر تشکيل سولفون آميد يک استخلافي است يعني مجهول، آمين نوع اول است. اگر هيچگونه واکنشي انجام نشد، مجهول ممکن است آمين نوع سوم باشد.
    چنانچه نتايج حاصل از روش بالا واضح نبود مي توانيد به جاي پارا – تولوئن سولفونيل از 2/0 ميلي ليتر بنزن سولفونيل کلريد استفاده کنيد. در صورت استفاده از اين واکنشگر محصول جامد تشکيل نمي شود و محصول بصورت روغني است.
    e559ece740
    2- نيترو اسيد
    1/0 گرم آمين را در 2 ميلي ليتر اب حل کنيد و به اين محلول 8 قطره سولفوريک اسيد غليظ اضافه کنيد، اين مخلوط را در يک لوله آزمايش بزرگ نهيه نماييد و سپس در حمام يخ بگذاريد دماي آن بايد بين صفر تا 5 درجه باشد. در يک لوله آزمايش ديگر 2 ميلي ليتر محلول آبي سديم نيتريت 5 % بريزيد و بگذاريد سرد شود و در لوله آزمايش سوم 2 ميلي ليتر محلول آبي سديم هيدروکسيد 10 % که 1/0 گرم بتا- نفتول در آن حل شده است بريزيد و اين لوله را هم در حمام يخ قرار دهيد. محلول سديم نيتريت سرد را قطره قطره به محلول آمين سرد شده اضافه نماييد وهر بار خوب بهم بزنيد. با دقت به خروج گاز نيتروژن نگاه کنيد. بايد توجه داشته باشيد گاز نيتروژن بي رنگ است اما گاز نيتروژن اکسيد قهوه يي است. متصاعد شدن گاز نيتروژن در دماي 5 درجه و يا کمتر از آن نماياننده آمين آليفاتيک نوع اول (RNH2) است. تشکيل روغن زرد رنگ يا رسوب نشان دهنده آمين نوع دوم است. آمينهاي نوع سوم آليفاتيک در شرايط معمولي با اسيد نيترو واکنش نمي دهند و نيتروژن آمينهاي نوع سوم آروماتيک با اسيد نيترو واکنشي نمي دهد، اما بين + Na و حلقه آروماتيک، واکنش استخلافي الکترون دوستي انجام مي شود.
    اگر در 5 درجه خروج گاز مشاهده نشد و يا خروج گاز بسيار کم بود. نيمي از محلول را در يک لوله آزمايش بريزيد و با آرامي آنرا حرارت دهيد تا به دماي اطاق برسد. در اين دما خروج حبابهاي گاز نيتروژن قابل رؤيت است. که نشان دهنده آمين آروماتيک نوع اول (ArNH2) است. به نصف ديگر محلول که باقيمانده است قطره قطره محلول β- نفتولدر سود اضافه نماييد. چنانچه رسوب قرمز رنگ تشکيل شود، قطعاً مجهول آمين آروماتيک نوع اول (ArNH2) است.
    3- PH محلول آبي
    چنانچه ترکيب در آب محلول است، با حل کردن مقداري از آن در آب محلول آبي آنرا تهيه نماييد و PH آنرا با کاغذ PH بررسي نماييد. چنانچه ترکيب آمين باشد، بازي است و PH محلول آن بالا است. اگر ترکيب در آب نامحلول بود بايد آنرا در محلول اتانول – آب و يا دي اکسان – آب حل کنيد.
    4- استيل کلريد
    آمينها با واکنشگر استيل کلريد واکنش مي دهند ( با آزاد شدن گرما ). 5/0 ميلي ليتر از آمين را در يک لوله آزمايش کوچک بريزيد و سپس با احتياط 10 تا 15 قطره استيل کلريد را قطره قطره به امين اضافه کنيد، ايجاد حرارت و گاز هيدروژن کلريد نشان دهنده مثبت بودن نتيجه آزمايش است. چنانچه مخلوط آزمايش را با آب رقيق کنيد، براي آمينه نوع اول و نوع دوم رسوب استاميد تشکيل مي شود. براي آمينهاي نوع سوم چنين نتيجه يي مشاهده نمي شود.
    تهيه مشتق
    سودمندترين مشتقات براي آمينهاي نوع اول و دوم، استاميد، بنزآميد و پارا– تولوئن سولفون آميد هستند. متداولترين مشتقي که براي آمينهاي نوع اول و دوم و سوم مي توان تهيه کرد نمک پيکريک اسيد يعني پيکرات آمين است. يکي از مفيدترين مشتقها براي آمين نوع سوم نمکهاي نوع چهارم است که از ترکيب آمين با متيل يديد قابل تهيه است.
    1- استاميد
    در يک ارلن ماير کوچک حدود يک ميلي مول آمين و 5/0 ميلي ليتر استيک ايندريد بريزيد. مخلوط را براي 5 دقيقه حرارت دهيد سپس 5 ميلي ليتر آب به آن بيافزاييد و محلول را بشدت بهم بزنيد تا محصول بصورت رسوب ظاهر شود و استيک ايندريد اضافي هيدروليز شود. چنانچه محصول بصورت بلور رسوب نشد با يک بهمزن شيشه يي ديواره ظرف را خراش دهيد. با صاف کردن مخلوط روي قيف بوخنر، بلورها را جدا نماييد و چند بار با محلول هيدروکلريک اسيد 5 % سرد بشوييد، سپس براي تخليص آنرا با مخلوط حلال، متانول – آب متبلور نماييد.
    براي آمينهاي آروماتيک يا آنهايي که خصلت بازي زياد ندارند، به عنوان حلال آنها و همچنين کاتاليزور واکنش بايد از پيريدين استفاده شود. چنانچه از پيريدين استفاده شود، مخلوط بايد مدت بيشتري ( بيش از يک ساعت ) حرارت داده شود و واکنش را در بالني که مجهز به مبرد است رفلاکس نمود. بعد از رفلاکس، بايد مخلوط واکنش را با 5 تا 10 ميلي ليتر سولفوريک اسيد 5 % استخراج نمود تا پيريدين آن جدا شود.
    2- بنزآميد
    الف- در يک لوله آزمايش حدود يک ميلي مول آمين و يک ميلي ليتر محلول سديم هيدروکسيد 10 % بريزيد و سپس 5/0 گرم بنزوئيل کلريد ( يا پارا – نيتروبنزوئيل کلريد ) به مخلوط بيافزاييد. درب لوله را ببنديد و مخلوط ر براي 10 دقيقه بشدت تکان دهيد. بعد از تکان دادن با افزايش هيدروکلريک اسيد رقيق به مخلوط، PH آنرا به حدو 8-7 برسانيد. رسوب را روي قيف بوخنر صاف کنيد و آنرا با آب سرد کاملاً بشوييد و براي تخلسص از حلال مخلوط، اتانول – آب آنرا متبلور نماييد.
    3- پيکرات
    2/0 گرم مجهول را در 5 ميلي ليتر اتانول حل کنيد و سپس 5 ميلي ليتر محلول اشباع شده پيکريک اسيد در اتانول به آن اضافه نماييد. محلول را حرارت دهيد تا به جوش آيد و سپس بگذاريد در دماي اطاق سرد شود. رسوبات را روي قيف بوخنر صاف کنيد و با کمي اتانول سرد آنرا بشوييد.
    4- متيوديد
    در يک لوله آزمايش بزرگ به حجم مساوي از آمين و متيل يديد ( 5/0 ميلي ليتر از هر کدام ) را مخلوط نماييد. مخلوط را براي چند دقيقه بگذاريد بماند. سپس آنرا براي 5 دقيقه روي حمام بخار رفلاکس نماييد. سپس نمونه را بگذاريد سرد شود و متيوديد در اثر سرد شدن متبلور مي شود. اگر بلورها ظاهر نشد با بهمزن شيشه يي ديواره ظرف را خراش دهيد. مخلوط با قيف بوخنر صاف کنيد و بلورها را جدا کنيد و براي تخليص آنها را با حلال اتانول يا اتيل استات متبلور نماييد.

  2. #12
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض گزارش کار آزمایش تصعید

    مقدمه و تئوری:
    فشار بخار يك ماده جامد با دما تغيير مي كند. به همين دليل، بعضي تركيبات جامد بدون اينكه از فاز مايع عبور كنند به آساني و مستقيما به بخار تبديل مي شوند. اين فرايند، تصعيد ناميده مي شود.
    چون بخار را مي توان دوباره جامد كرد از اين تبديل مي توان به عنوان روشي براي تخليص مواد استفاده كرد. عمل تخليص وقتي به خوبي انجام پذير است كه فشار بخار ناخالصيها مشخصا كمتر از فشار بخار ماده تصعيد شدني باشد.
    به عبارتی دیگر تنها می توان مواد جامدی را از هم جدا کرد که اختلاف فشار بخار زیادی از یکدیگر دارند.
    در این روش نمونه در دمایی پایین تر از نقطه ی ذوب گرم می شود و مستقیماً از حالت جامد به صورت بخار در می آید و سپس بخار حاصل در سطح سردی به حالت جامد متبلور می شود.
    تصعید جامدات:
    تصعيد خاصيتي است كه معمولا در مواد نسبتا غير قطبي با ساختمان بسيار متقارن ديده مي شود. تركيبات متقارن، غالبا نقطه ذوب و فشار بخار بالايي دارند.
    تبخير پذيري آسان اين مواد از سطح جامد را معلول ضعيف بودن نيروهاي بين مولكولي مي دانند.
    sublimation air freshener 174 Sublimation apparatus Steps2520Involved2520in2520sublimation
    روش کار:
    - مقداری نفتالین ناخالص را بر روی شیشه ساعت ریخته،
    - انتهای یک قیف شیشه ای تمیز را مسدود ( با کاغذ یا پنبه ) و با دقت وزن می کنیم(=25.88g)
    - قیف را روی شیشه ساعت حاوی نفتالین برگردانده طوری که هیچ منفذی به بیرون نداشته باشد.
    - مجموع قیف و شیشه ساعت را به ملایمت گرم می کنیم؛ بهتر است براي گرم كردن از حمام بخار استفاده شود. چنانچه حمام بخار در دسترس نبود، بشري را كه قطر دهانه آن متناسب با قطر شيشه ساعت باشد تا دو سوم حجم از آب پر كنيد و شيشه ساعت و قيف را روي آن بگذاريد و آب را به ملايمت گرم كنيد. ( 30 الی 45 دقیقه آنرا به همان حال بگذارید )
    - طی این مدت در اثر حرارت نفتالین تصعید شده و روی قیف سرد متراکم می شود.
    - اجازه می دهیم سیستم کمی سرد شود. حال قیف را توزین کرده (=26.43 )
    و وزن بلورها را گزارش می کنیم :
    26.43 - 25.88 = 0.55 g

  3. #13
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض تعيين ضريب هدايت حرارتی جامدات

    هدف از آزمايش: ارائه يک ديد عملي از قانون فوريه و بدست آوردن مقدار K براي فلزات مي باشد.
    انتقال گرما ، گذار انرژي بر اثر اختلاف دما است . اختلاف دما به عنوان يک نيروي محرکه ( Driving Force ( سبب انتقال گرما مي شود . حرکت مولکول ها در کنار هم و ارتعاش آنها سبب مي شود که گرما از يک مولکول به مولکول مجاور منتقل شده و در نتيجه گرما منتقل مي گردد .
    هرگاه در يك محيط يا ميان دو محيط اختلاف دما وجود داشته باشد و دماي محيط ها يکسان نباشد ، انتقال گرما رخ مي دهد .
    انواع مختلف انتقال گرما را شيوه هاي آن مي گويند يعني راه هاي انتقال گرما را شيوه هاي آن مي گويند .
    وقتي در محيط ساكني ، كه مي تواند جامد يا سيال باشد ، شيب دما وجود داشته باشد ، براي انتقال گرمايي كه در محيط روي مي دهد از واژه رسانش ( Conduction) و براي انتقال گرماي بين سطح و سيالي متحرك ، كه دماي آنها با هم متفاوت است ، از واژه جابجايي ( Convection) استفاده مي شود . نوع سوم انتقال گرما تشعشع گرمايي ( Radiation ) است .
    تمام سطوح با دماي معين انرژي را به شكل امواج الكترومغناطيس گسيل مي دارند يعني هر سطح در هر دمايي مي تواند از خود تابش ايجاد کند . از اين رو ، در نبود محيط واسط ، ميان دو سطح با دماهاي مختلف انتقال گرماي خالص تشعشعي وجود دارد و اگر هم ميان دو سطح محيط واسطي وجود داشته باشد انتقال گرما مي تواند از طريق رسانش و يا جابجايي و يا هر دو اينها صورت بگيرد . در زير راههاي مختلف انتقال گرما را بررسي مي کنيم .
    تئوري
    براي انتقال گرما روش هاي متعددي وجود دارد که ذکر شد در اينجا به شرح اين سه روش مي پردازيم .
    رسانش :
    رسانش مستقيماً به حرکت مولکولها و اتمها وابسته است اين فرايندها در سطح مولکولي و اتمي است كه اين نوع انتقال گرما را تداوم مي بخشند . رسانش را به عنوان انتقال انرژي از ذرات پر انرژي به ذرات كم انرژي ماده ، بر اثر بر هم كنش هاي بين آنها مي توان دانست يعني در اين شيوه برخورد اتمها و يا مولکولهاي مجاور به همديگر سبب انتقال گرما مي گردد .
    با در نظر گرفتن يك گاز و با استفاده از مفاهيم ترموديناميكي ، مكانيزم فيزيكي رسانش به ساده ترين وجه توضيح داده مي شود . گازي را در نظر مي گيريم كه در آن شيب دما وجود دارد يعني ميان دو نقطه از آن اختلاف دما وجود دارد و فرض كنيم كه هيچ حركت كپه اي وجود ندارد گاز مي تواند فضاي بين دو سطحي را ، كه در دما هاي متفاوت قرار دارند ، اشغال كند . دما در هر نقطه به انرژي مولكول هاي گاز موجود در مجاو.رت آن نقطه نسبت داده مي شود . اين انرژي به حركت هاي انتقالي تصادفي و همچنين به حركت هاي چرخشي و نوساني مولكول ها ارتباط دارد .
    دماهاي بالاتر به انرژي هاي مولكولي بالاتر نسبت داده مي شود ، و با برخورد مولكول ها به يكديگر
    ( پديده اي كه دائماً روي مي دهد ) ، انرژي از مولكول هاي پر انرژي به مولكول هاي كم انرژي منتقل مي شود . بنابراين وقتي شيب دما وجود دارد ، انتقال انرژي رسانشي در جهت كاهش دما روي مي دهد . در شكل ( a ) مولكول ها صفحه فرضي xo را از بالا و پايين با حركت تصادفي خود دائماً قطع مي كنند . ولي ، مولكول هاي بالايي از مولكول هاي پاييني دماي بيشتري دارند . بنابراين در اين حالت ، انتقال خالص انرژي در جهت x مثبت وجود دارد . انتقال خالص انرژي توسط حركت تصادفي مولكولي را پخش انرژي مي گويند .
    zib
    در مايعات نيز وضع به همين منوال است ، ولي مولكول ها به هم نزديكترند و بر هم كنش هاي مولكولي قويتر و تكراري تر است . بطور مشابه ، رسانش در اجسام جامد را به فعاليت اتمي ، به شكل ارتعاشات شبكه اي ،
    مي توان نسبت داد . در ديدگاه جديد ، انتقال انرژي را به امواج شبكه اي ، كه با حركت اتمي ايجاد مي شود ، ارتباط مي دهد . در نارساناها ، انتقال انرژي توسط حركت انتقالي الكترون هاي آزاد نيز روي مي دهد .
    فرايند هاي انتقال گرما را بر حسب معادله هاي آهنگ مربوط مي توان بطور كمي بيان كرد . از اين معادله ها براي محاسبه مقدار انتقال انرژي در زمان واحد مي توان استفاده كرد . معادله آهنگ رسانش گرما توسط قانون فوريه به دست داده مي شود . قانون فوريه بيان مي کند که شار گرماي به وجود آمده در يک رسانا متناسب است با اختلاف دماي دو سر رسانا و با ظول آن رسانا نسبت عکس دارد با در نظر گرفتن ثابت يا همان ضريب ثابتي مي توان اين تناسب را به تساوي تبديل کرد براي سطح مسطحي يك بعدي شکل ( c ) كه توزيع دماي( T(x را دارد ، معادله آهنگ بصورت زير است :

    شار گرماي عبارت است از آهنگ انتقال گرما در جهت x براي مساحت واحد عمود بر جهت انتقال ، كه با شيب دما ، dT/dx ، در اين جهت متناسب است . ثابت تناسب k يك خاصيت انتقال است و به آن رسانندگي گرمايي ( W/m.K) مي گويند و مشخصه اي از مواد ديوار است . علامت منفي به اين دليل است كه گرما در جهت كاهش دما منتقل مي شود . با دو فرض خطي بودن توزيع دما و پايدار بودن حالت تحليل مساله مي توان رابطه زير را به دست آورد .
    با داشتن اين دو رابطه مي توان معادله شار گرما را با داشتن ضريب تناسب و دماهاي دو طرف سطح و ضخامت سطح يافت .که در اين رابطه منظور از x انتقال حرارت در راستاي x است از معادله بالا شار گرما ، يعني آهنگ انتقال گرما براي مساحت واحد ، بدست مي آيد . با ضرب اين شار گرمايي در مساحت سطح مورد بحث مي توان مقدار گرماي مورد نظر را يافت .

    جابجايي : ( Convection )
    گرما از طريق جابجايي نيز منتقل مي گردد در اين شيوه حرکت مولکولها و ارتعاشات مولکولها سبب انتقال گرما نيز مي شود .
    عده زيادي از مولکولها که در کنار يک سطح قرار گرفته اند با آن سطح در تبادل دمايي هستند و با آن سطح همدما مي شوند . اين عده به علت تفاوت درمايي در بين دو نقطه از سيال از جاي خود حرکت کرده و به آنجايي که دماي کمتري دارد منتقل مي گردند . اين انتقال همراه با حمل گرما توسط اين مولکول ها همراه است و به اين ترتيب مولکولها گرما را از يک نقطه با دماي بيشتر به نقطه ديگري با دماي کمتر منتقل مي کنند . اين حرکت توده مولکولها را حرکت کپه اي مي نامند . پس انتقال گرما در پديده جابجايي حاصل ترکيب دو نوع انتقال گرماي رسانش و گرماي ناشي از اين حرکت کپه اي است .
    معمولاً از واژه كنوكسيون براي اين انتقال تركيبي و از واژه ادوكسيون براي انتقال ناشي از حركت كپه اي سيال استفاده مي شود .
    در پديده جابجايي بايد سيال داراي حرکت باشد و از طرفي دماي سطح و سيال با هم ديگر تفاوت داشته باشند اگر سيال داراي حرکت نباشد مکانيسم انتقال حرارت بيشتر توسط رسانش صورت مي گيرد هرچند که جابجايي طبيعي نيز بايد مورد توجه قرار گيرد و اگر دماها برابر باشند به علت نبودن گراديان دمايي هيچ گونه انتقال حرارتي انجام نمي گيرد .
    اگر دماي سطح از دماي سيال بيشتر باشد جهت انتقال دما از سطح به سيال است و اگر دماي سيال از دماي سطح بيشتر باشد جهت انتقال گرما برعکس مي شود .
    در عبور سيال از يک سطح با دماهاي متفاوت مي توان دو لايه مرزي را براي فرايند متصور شد يک لايه مرزي سرعت و ديگري لايه مرزي حرارت که اين دو لايه ممکن است بر هم افتاده و يا کاملاً متفاوت باشند .
    انتقال گرماي جا به جايي توسط حركت تصادفي مولكولي و حركت كپه اي سيال در لايه مرزي تداوم مي يابد . حركت تصادفي مولكولي ( پخش ) در نزديكي سطح ، كه در آنجا سرعت سيال كم است ، سهم اصلي را دارد . يعني اينکه در اين ناحيه به علت نبودن سرعت بالا سيال نمي تواند به طور مناسب با سطح تبادل حرارتي انجام دهد از طرفي در فصل مشترك بين سطح و سيال ( y = 0 ) سرعت سيال صفر است و گرما فقط توسط مكانيزم پخش منتقل مي شود يعني ئر اين ناحيه بيشتر رسانش کار انتقال گرما را انجام مي دهد .
    جابجايي را مي توان بنا به نحوه انجام فرايند به دو دسته واداشته ( Force Convection) و يا جايجايي آزاد(Natural Convection) تقسيم کرد .
    اگر جابجايي توسط وسائل مکانيکي مانند فن , پمپ و يا توربين انجام شود جابجايي را واداشته و اگر اختلاف چگالي سبب اين جابجايي شود آن را آزاد مي نامند .
    در برخي مواقع ممکن است ترکيبي از هر دو فراين را با هم داشته باشيم و از هردو فرايند استفاده کنيم يعني نرخ انتقال توسط جابجايي آزاد کم بوده و براي افزايش نرخ انتقال حرارت از جابجايي واداشته استفاده مي شود .
    انتقال حرارت توسط سيال متناسب است با دماي سيال و دماي سطح اين دماها در حقيقت دماي موضعي و يا دماي متوسط سطح و سيال است .
    اين تناسب توسط ضريب ثابتي به تساوي تبديل مي گردد اين ضريب متناسب با خواص سيال و سرعت سيال بستگي دارد که اين ويژگي ها با هم در عدد رينولدز جمع مي شوند .
    معادله آهنگ آن به صورت زير است :
    كه در آن ، شار گرماي جابجايي ( W/m2 ) ، با اختلاف دماي Ts سطح و دماي سيال متناسب است . رابطه بالا را قانون سرمايش نيوتن و ثابت تناسب h ( بر حسب W/m2.k ) را ضريب انتقال گرماي جابجايي مي گويند .
    تابش ( Radiation )
    هر جسم در هر دمايي از خود تابش مي کند و مقداري انرژي را نيز از محيط اطراف جذب مي کند برايند اين جذب و دفع برابر است مقدار انرژي که از سطح خارج و يا به آن وارد مي شود .
    اين نوع انتقال گرما نيز متناسب است با توان چهارم دماي سطح و دماي جسم اين تناسب نيز توسط ضريبي به تساوي تبديل مي شود اين ضريب ضريب جذب ناميده مي شود و تابعي از هندسه سطح و نوع و جنس آن است .
    شار گرمايي توسط تابش را مي توان با رابطه زير يافت .

    با ضرب اين مقدار در مساحت سطح مود نظر مي توان مقدار خالص گرماي مباذله شده را يافت
    قانون فوريه :
    در تحليل رسانش در يک بعد معروفترين و کاربردي ترين رابطه و قانون قانون فوريه است اختلاف درجه حرارت باعث انتقال حرارت مي شود که مقدار آن را با رابطه فوريه بدست مي آوريم .
    آزمايش تحليل رسانايي يک بعدي :
    در تحليل رسانش يک بعدي فرض بر اين است که گرما فقط در يک جهت و در جهت فقط يک محور منتقل
    مي گردد و از انتقال گرما در ساير راستاها صرف نظر مي شود .
    در اين آزمايش با داشتن منبع حرارتي و با استفاده از ترموکوپلهايي که در فواصل معيني از هم قرار گرفته اند
    مي توان مسئله رسانش در يک بعد را مورد بررسي قرار داد .

    شرح ساختمان دستگاه:
    سيستم گرمايش :
    براي شبيه سازي منبع گرمايي مي بايست يک مقدار مشخص انرژي به جسم داده شود که اين مقدار را با الکتريسيته تامين مي کنيم. وQ=V.I است.که در هر مرحله ولتاژ و جريان را تغيير مي دهيم و در واقع Q را تغيير داده ايم. در هر مرحله مي توان با استفاده از دستگاه مقدار ولتاژ و جريان متناظر آن را يافت و با ضرب اين دو در هم مقدار گرما را يافت .
    سيستم خنک کننده :
    از آب شهر براي خنک کردن استفاده مي شود که با يک لوله به سيستم وارد مي شود وپس از خنک کاري سيستم دوباره برمي گردد.
    سيستم عايق بندي:
    براي جلوگيري از انتقال حرارت جابجاي و تابشي سيستم را در يک پوشش پلاستيکي ضخيم قرار داده ايم که مانع از برخورد هوا به آن مي شود.
    وسايل موجود روي دستگاه:
    توليد انرژي حرارتي: اين کار توسط يک المنت حرارتي انجام مي شود در حقيقت کار اين المنت تبديا الکتريسته به گرما مي باشد و مقدار گرماي توليد شده نيز متناظر با حاصل ضرب ولتاژ در جريان است.
    دماسنج : اين دستگاه شامل تعدادي سنسور است که در قسمت هاي مختلف نصب شده است و دما را در روي صفحه دستگاه نمايش مي دهند.

    تئوري اساسي:
    در واقع در اين آزمايش ما مي خواهيم مقدار k را در حالتهاي محوري و شعاعي بدست آوريم. براي اين کار ابتدا يک مقدار انرژي به يک ميله رسانا مي دهيم و سپس دما را در قسمت هاي مختلف آن اندازه مي گيريم و با استفاده از رابطه فوريه مقدار k را بدست مي آوريم: مهمترين کار در اين آزمايش يافتن شيب خط تغييرات دما بر حسب تغييرات فاصله است که براي ولتاژهاي مختلف مقادير يکسان به دست مي آيد و از طرفي با داشتن شار گرمايي که همان حاصل ضرب ولتاژ در جريان است مي توان مقدار ثابت را در دو حالت محوري و شعاعي يافت .
    با توجه به قانون فوريه مي توان براي سيستم محوري نمودار فاصله بر حسب دما را رسم کرد و براي سيستم شعاعي نيز بنا به روابط زير مي توان از لگاريتم طبيعي استفاده کرد .

    نحوه انجام آزمايش :
    آزمايش را با ولتاژ اوليه 40v و 80v براي هردو سيستم شعاعي و محوري انجام داده و نتايج را در جدول زير آورده و سپس نمودار دما بر حسب فاصله براي سيستم محوري و دما بر حسب لگاريتم طبيعي فاصله را براي سيستم شعاعي رسم مي کنيم و از آن مقدار ضريب ثابت را مي يابيم .
    اين دو نمودار بايد خطي بوده و شيب براي مقادير مختلف ولتاژ بايد برابر باشند يعني براي سيستم محوري نمودارهاي يافته شده بايد موازي باشند و همچنين براي سيستم شعاعي .
    براي تحليل سيستم انتقال حرارت يک بعدي سيستم را به گونه نشان داده در نظر مي گيريم.
    همانطور که مي بينيم T بر حسب X تقريبا خطي است و دما بر حسب Ln(r) نيز تقريباً خطي است .
    بيشترين تغييرات دمايي بين دو ترمومتر شماره 3 و 4 است چون در اين قسمت دو تکه فلز به هم وصل شده و هوا مانند عايقي عمل مي کند و سبب تغييرات دمايي و خارج شدن از حالت خطي مي گردد
    شيب خط در اولي تقريباً برابر است با 195 و در شعاعي برابر است با 5.675 با داشتن مقدار Q داريم که
    0.0656= 195/12.8 و براي شعاعي نيز برابر است با 2.2555 = 5.675/12.8
    با داشتن مقدار طول مي توان مقدار K دردر سيستم شعاعی محاسبه کرد .
    منابع خطا :
    ولتاژ دستگاه ثابت نمي شد.
    دماي دماسنجها ثابت نمي شد و دامنه نوسان آنها خيلي زياد بود.
    دو تکه فلز به خوبي به هم متصل نمي شدند و يک مقاومت سطحي بين آنها وجود داشت که باعث خطا مي شد اين خطا بيشتر در نواحي که دو فلز به متصل مي شدند نمود داشت .

    منابع و ماخذ :
    1-مقدمه اي بر انتقال گرما ، نويسنده فرانک-پ.اين کروپرا و ديويد-پ. دويت ،ويرايش چهارم
    2- دستور کار آزمايشگاه انتقال حرارت

  4. #14
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض

    آزمایش2:
    اندازهگیری سطحی مایعات
    روش ازمایش:اگر تیغه را از کنار بشر بیندازیم ته بشر میرود ولی اگر از بالا پرتاب بکنیم ته ان میرود.
    کشش سطحی مولکولهای روی اب نسبت به ته ان یکسان نیستند.
    مولکولهای اب تمایل دارندکه فقط مولکولهای همانند خود را جذب بکنند
    ولی با مواد دیگر مثل گاز و هوامولکولها نمیتوانند به هم وصل شوند.

  5. #15
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض ازمایش:انحلالها

    روش ازمایش:
    دقیقا در بشرمحتوی 250گرم اب
    دماسنجی قرار میدهیم و دما را در هر مرحله یادداشت میکنیم. در هرمرحله 250گرم از مواد داخل جدول به ان اضافه میکنیم وافزایش دمای جدید را یادداشت میکنیم
    1مولار محلول:1مول بر{1/4}بر{1000/4} مول بر{250 /0}گرم حلال
    ماده
    مول بر میلی گرم
    مول250/0
    Kno3
    101
    25.25
    CH3COONA
    82
    20.5
    سود جامد
    40
    4.15
    KI
    166
    41.5
    C12H22O11
    270گرم مول
    67.5


    در هر بار ازمایش مثلا در مورد ازمایش KIحدود 15/4 گرم از یدید پتاسیم را وزن کرده ودر داخل 250 گرم بشر میریزیم وتوسط یک دماسنج دمای اولییه ان را اندازه میگیریم که 30میباشد
    و د مای اولییه بقیه راهم به این صورت اندازه میگیرم.


  6. #16
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض تهیه صابون

    تهیه صابون
    عمل هیدرولیز چربی یا روغن را اصطلاحا صابونی کردن مینامند. برای این کار، چربی (a) را با محلول سود حرارت میدهند. در نتیجه گلیسرین (b) و مخلوطی از نمک سدیم اسیدهای چرب (c) مطابق واکنش زیر حاصل میشود:



    image001



    چربیها و روغنهای طبیعی استر اسیدهای آلیفاتیک یک ظرفیتی با تعداد اتمهای کربن زوج و گلیسرین میباشند که آنها را گلیسرید نیز مینامند. چربیها و روغنها به طور کلی دارای ساختمان (a) میباشند. چربیها جامد و روغنها مایع میباشند. نقطه ذوب چربیها بالاتر از نقطه ذوب روغنها است. این اختلاف بستگی به نوع و مقدار اسید مربوطه دارد. هرچه مقدار اسیدهای اشباع نشده در ساختمان یک چربی بیشتر باشد، نقطه ذوب پایین تری دارد. اگر چربی تنها از اسیدهای اشباع شده تشکیل شده باشد مانند پیه گوسفند و غیره نقطه ذوب بالا خواهد داشت.
    روغنهای نباتی مانند روغن زیتون، خرما، نارگیل و کرچک علاوه بر این که دارای اسیدهای چرب (اولئیک، استئاریک و پالمیتیک) هستند، اسیدهای اشباع نشده با چند پیوند دوگانه مانند اسید لینولئیک به فرمول زیر نیز در ساختمان آنها شرکت میکنند.




    image002


    مکانیزم عمل هیدرولیز استر را در محیط بازی میتوان به صورت زیر نوشت:




    image003


    ابتدا یون هیدروکسید به عنوان نوکلئوفیل (هسته دوست) به کربن گروه کربنیل حمله کرده، پس از خارج شدن یک مولکول الکل، انیون اسید به صورت هیبرید رزونانس فوق، پایدار میگردد.
    بخش عملی
    تهیه صابون
    50 گرم چربی را در یک بشر 250 میلی لیتری ریخته و به طور ملایم آنرا حرارت دهید تا ذوب شود (دما نباید از 70 درجه بالاتر برود).
    در حالیکه چربی را حرارت میدهید ضمن به همزدن مداوم محلول سود (7گرم در 50 میلی لیتر آب) را در قسمتهای 5 میلی لیتر به چربی اضافه کنید. پس از افزودن اولین 5 میلی لیتر سود، زمان اضافه نمودن 5 میلی لیتر بعدی وقتی است که سود اضافه شده قبلی تقریبا مصرف شده باشد. (برای اطمینان از مصرف سود نوک اسپاتول را در بشر فرو برده و یک قطره معرف فنل فتالئین روی آن بچکانید، چنانچه رنگ آن فورا ارغوانی شد دلیل آن است که هنوز سود در محیط وجود دارد و باید به هم زدن را ادامه داد).
    پس از افزودن آخرین قسمت سود، آنقدر به هم بزنید تا صابون یک حالت کشدار به خود بگیرد (بوی صابون در این حالت به خوبی استشمام میشود.) صابون حاصل را در قالب ریخته و بگذارید یک هفته بماند تا عمل صابونی شدن کامل شود. صابون حاصل دارای مقدار زیادی گلیسیرین است، چنانچه بخواهند گلیسیرین آنرا جدا کنند، قبل از ریختن در قالب، صابون را به مدت 24 ساعت در محلول اشباع شده نمک طعام قرار میدهند، سپس قرص صابون را از درون ظرف خارج کرده و پس از شستن به قطعات کوچک تقسیم نموده، در هوا خشک میکنند.


    روش دیگر تهیه صابون
    در یک بالن، cc50 روغن مایع را با cc40 اتانول و gr3 پتاسیم هیدروکسید ریخته و بمدت نیم ساعت رفلاکس کنید. پس از اتمام این مدت چند قطره از مخلوط را در مقدار کمی آب حل کنید که اگر قطره روغنی روی آب قرار نگرفت واکنش پایان یافته و اگر روغن در سطح آب مشاهده شد عمل رفلاکس را به مدت 15 دقیقه دیگر ادامه دهید. سپس الکل موجود در مخلوط را به وسیله تقطیر ساده جدا کنید و ماده باقیمانده در بالن را در cc 75 آب مقطر گرم حل کنید. دقت کنید که حتما الکل موجود در بالن از مخلوط خارج شود سپس آزمایش زیر را انجام دهید.
    الف) مقدار 25 میلی لیتر محلول به دست آمده را به 25 میلی لیتر آب نمک اشباع به آهستگی اضافه کنید مخلوط را صاف کرده و ماده جامد که صابون میباشد روی کاغذ صافی میماند. آنرا با آب نمک اشباع بشوئید و صابون را در روی یک ظرف شیشه ای پهن کنید.
    ب) مقدار 10 میلی لیتر آب شهر را با 10 میلی لیتر محلول صابون مخلوط کرده تکان دهید و نتیجه را گزارش کنید.

  7. #17
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض

    تهيه پليمر خطي فنل فرمالدئيد و تبدبل آن به پليمر 3 بعدي در محيط اسيدي و بازي تهيه رزول
    در لوله آزمايش يك گرم فنل را در 2ml محلول آبي فرمالين حل كنيد و به اين مخلوط تقريبآ 2ml محلول آبي رقيق آمونياك 2M اضافه نماييد . سپس چند دانه سنگ جوش را درون لوله بيندازيد . لوله را به پايه تقطير متصل نمائيد، سپس لوله را با استفاده از يك چراغ بونزن به آرامي حرارت دهيد تا مخلوط به رنگ سفيد شيري در آيد . سپس حرارت دادن را متوقف كنيد در اين حالت بايد مخلوط صورت دو لايه اي جدا از هم در آمده باشد كه لايه زيرين به صورت ويسكوز زرد رنگ در آيد و لايه‌ي بالايي نيز سفيد رنگ باشد. كه بيشتر آن به صورت آب است . با استفاده از يك قطره چكان يا پي‌پت لايه بالايي را برداريد . مايع زيرين همان رزول مي باشد كه حاوي مقادير جزيي آب است . با حرارت دادن اين مايع وسكوز در داخل لوله آزمايش و يا بر روي سطح شيشه ساعت (ترجيحآورقه آلومينيومي) رزين به رنگ زرد تيره در آمده قل مي‌زند و نهايتآ به صورت جامد شيشه اي و قرمز قهوه‌اي رنگ تبديل مي‌شود. مي‌توان حلاليت اين رزين را قبل از حرارت دادن و بعد از آن به وسيله حلال‌هاي اتانول و استون و تولوئن بررسي و مقايسه كرد .

  8. #18
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض تعیین نقطه جوش ( Boiling point )

    نقطه جوش دمائی است که در ان فشار بخار مایع برابر فشار بخار جو می گردد لذا برای ثبت نقاط جوش ذکر فشار خارجی را می طلبد و زمانیکه فشار ذکر نشود منظور نقطه جوش در فشار یک اتمسفر کامل می باشد که نقطه جوش نرمال نامیده میشود . بعضی از مایعات قبل از رسیدن به نقطه جوش تجزیه می شوند .
    روش اندازگیری نقطه جوش به مقدار مایعی که در اختیار داریم بستگی دارد اگر مقدار زیاد باشد از روش تقطیر و اگر کم باشد از روش میکرو استفاده میشود .

    روش میکرو
    انتهای لوله موئین را به کمک شعله مسدود کنید و به طول یک سانتیمتر بشکنید و از طرف دهانه باز ان را دریک لوله ازمایش خشک و تمیز از جنس شیشه نازک به قطر 7 – 5 میلی متر وارد کنید.
    داخل لوله ازمایش مایعی را که میخواهید نقطه جوش بگیرید انقدر بریزید که لوله موئین را بپوشاند .
    لوله ازمایش را با کمک سیم یا لاستیک به ترمومتر متصل کنید به طوری که مخزن ترمومتر در کنار مایع داخل لوله ازمایش باشد.
    ترمومتر را به کمک گیره و پایه طوری متصل نمایید که مخزن ترمومتر و مایع داخل لوله ازمایش داخل حمام قرار گیرد.
    سپس حمام را به ارامی و با شعله متوسط گرم نمایید تا حباب های پیوسته از لوله موئین خارج شود در این هنگام حرارت را قطع نمایید تا حمام سرد شود .
    خروج حباب از لوله موئین به تدریج کم خواهد شد تا زمانی که دیگر حبابی خارج نمی شود و مایع وارد لوله موئین میشود و داخل لوله موئین بالا میرود .
    زمانی که حباب ها قطع میشود فورا دمای ترمومتر را خوانده که دمای جوش مایع می باشد .
    برای کاهش خطا در ازمایش فوق میتوان پس از خواندن دمای جوش مایع حمام را مجددا گرم نمود تا حباب های پیوسته از لوله موئین خارج شود و سپس حرارت را قطع کرده و هنگامی که خروج حباب ها پایان یافت دمای جوش را مجدد خواند.

  9. #19
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض کمپرسور

    ماشین هایی که جذب کننده قدرت مکانیکی هستند و این قدرت را به صورت های مختلفی از قبیل انرژی حرارتی،انرژی جنبشی و یا پتانسیل به سیال اعمال می کنند طیف وسیعی را شامل می شوند از قبیل : فن ها، دمنده ها و کمپرسور ها .
    یکی از موارد استفاده از کمپرسور ها، جهت افزایش فشار گازها تا یک حد معین برای کاربرد های صنعتی می باشد.

    تقسیم بندی کلی کمپرسور ها :
    از عمده معیار های تقسیم بندی کمپرسور ها، می توان به تقسیم بندی بر اساس مکانیزم و اصول کارکرد و نحوه اعمال انرژی به سیال، اشاره داشت که بر این اساس تقسیم بندی های زیر را برای کمپرسور ها خواهیم داشت :
    1) کمپرسور های رفت و برگشتی یا جابجایی مثبت یا جریان منقطع
    2) کمپرسور های سانتریفیوژ یا دینامیک یا جریان پیوسته

    تفاوت های مهم این دو گروه فوق را می توان در موارد زیر خلاصه کرد :
    1) کمپرسور های رفت و برگشتی برای فشارهای زیاد و متوسط و شدت جریان های پایین به کار می رود در حالیکه کمپرسور های سانتریفیوژ برای فشارهای متوسط و پایین یا جریان های متوسط و بالا به کار می رود.
    2) فشارهای ایجاد شده در کمپرسور های سانتریفیوژ مقدار محدود و مثبتی دارد در حالیکه، در کمپرسور های رفت و برگشتی این فشارها می تواند متغیر و قابل تنظیم بوده و اصولا تابع نیاز سیستم می باشد.
    3) همان طوری که از نام گذاری این دو گروه ملاحظه می شود جریان در کمپرسور های رفت و برگشتی ناپیوسته بوده، به گونه ای که مقداری گاز به درون کمپرسور کشیده شده و عمل تراکم روی آن انجام می شود، سپس تخلیه شده و دوباره سیکل تکرار می گردد. ولی در کمپرسور های سانتریفیوژ سیکلی وجود نداشته و جریان پیوسته و ممتد می باشد.
    4) کمپرسور های دینامیکی (سانتریفیوژ) بر اساس نیروی گریز از مرکز که روی قطعه ای به نام پره اعمال می کند، ایجاد انرژی می نماید و این انرژی که از نوع انرژی جنبشی می باشد در خروجی کمپرسور، به فشار مبدل می شود در حالیکه کمپرسور های رفت و برگشتی مستقیما فشار گاز را توام با کاهش حجم، افزایش می دهند.

    کاربرد کمپرسور ها :
    بطور کلی کمپرسور ها جهت افزایش فشار سیالات قابل تراکم (گاز و بخار) تا یک حد معین، مورد استفاده قرار میگیرد.این فشار ممکن است نیازهای مختلفی را تأمین کند از قبیل: غلبه بر اصطکاک و تلفات مسیر، تاثیر در یک واکنش معین در نقطه تحویل گاز و بهبود خواص ترمودینامیکی گاز .به بیان ساده تر، کمپرسور ها کاری مشابه پمپ ها دارند با این تفاوت که سیال آنها بخار یا گاز می باشد. گازهای جابجا شده بوسیله کمپرسور از نقطه نظر وزن ملکولی و دیگر خواص شیمیایی و فیزیکی دامنه وسیعی را تشکیل میدهند ولی امروزه از سبک ترین تا سنگین ترین گازها توسط کمپرسور های گوناگون جابجا می شوند صنایع و زمینه های متعددی وجود دارند که در هر کدام از آنها نیازهای بخصوصی با انتخاب کمپرسور های مناسب تأمین میگردد که این زمینه ها عبارتند از:
    1) تهویه ساختمان، تونل ها، معادن و کوره ها
    2) تأمین هوای فشرده جهت احتراق در ماشینهای احتراق داخلی و دیگ های بخار
    3) انتقال انواع گازها
    4) تأمین فشار مخازن ذخیره تحت فشار
    5) تزریق گاز به میدان های نفتی
    6) سیستم های تبرید
    7) فرآیند های شیمیایی و تصفیه گازها

    « کمپرسور های دینامیک (Dynamic Compressors
    که شامل انواع زیر می شود :
    1) کمپرسور های گریز از مرکز (Centrifugal Compressors)
    2) کمپرسور های محوری (Axial Compressors)
    3) کمپرسور های جریان مختلط (Diagonal Or Mixed Flow Compressors)

    « کمپرسور های جا به جایی مثبت (Positive Displacement Compressors
    این کمپرسور ها شامل انواع زیر می شود :
    1) کمپرسور های رفت و برگشتی (Reciprocating Compressors)
    2) کمپرسور های دوار یا گردشی (Rotary Compressors)
    اکنون به تعریف برخی از این کمپرسور ها می پردازیم :

    « کمپرسور های گریز از مرکز (Centrifugal Compressors
    هر جا که ظرفیت و قدرت بالا مد نظر باشد بدون شک کمپرسور های سانتریفیوژ حرف اول را می زنند. از نظر تعداد مورد استفاده در صنعت نیز این ماشین ها با نوع رفت و برگشتی در مقام دوم هستند. راندمان آن ها در مقایسه با کمپرسور های رفت و برگشتی پایین بوده و لذا منبع انرژی را طلب می کنند. اصول کار در این کمپرسور ها بدین شکل است که افزایش فشار با شتاب گیری جریان گاز، در حرکت شعاعی در طول پره ها و تبدیل انرژی سرعت گاز به انرژی فشاری در عبور از دیفیوزر صورت می گیرد. این کمپرسور ها شامل قسمت های زیر هستند : 1) پوسته (Shell) ، 2) دیافراگم ها و دیفیوزر ها ، 3) آب بندی شانه ای ( Labyrinths) ، 4) پره ها (Impellers)

    CentrifugalCompressor

    « کمپرسور های جریان مختلط (Diagonal Or Mixed Flow Compressors
    کمپرسور های جریان مختلط یا قطری یا جریان محوری و شعاعی، مشابه کمپرسور های گریز از مرکز هستند. یعنی سیال موازی محور وارد چرخ می گردد و به طور مایل نسبت به محور از چرخ خارج می شود. در این کمپرسور ها دیفیوزر اغلب برای تبدیل جریان قطری به جریان محوری به کار می رود. کمپرسور های جریان مختلط دارای قطر دیفیوزر کمتری نسبت به کمپرسور های گریز از مرکز هستند. در این نوع کمپرسور ها متوسط شعاع خروجی بیش از ورودی است. تا کنون تعداد بسیار کمی از کمپرسور های پژوهشی جریان مختلط در سراسر جهان تست شده اند.
    این کمپرسور ها در ایالات متحده به کمپرسور های قطری(Diagonal Compressors) معروفند.

    « کمپرسور های رفت و برگشتی (Reciprocating Compressors
    کمپرسور های رفت و برگشتی قدیمی ترین و رایج ترین نوع کمپرسور ها بوده و عمل تراکم گازها با کاهش اجباری حجم توسط حرکت پیستون در داخل یک سیلندر صورت می گیرد.ورود گاز به سیلندر و خروج از آن به وسیله سوپاپ ها بر اساس اختلاف فشار ما بین خط لوله و درون سیلندر، باز و بسته می شوند.
    مشخصه بارز کمپرسور های رفت و برگشتی، امکان استفاده از آنها برای چندین سرویس در یک دستگاه واحد می باشد. مثلا از یک سیلندر برای کمپرس کردن پروپان و از سیلندرهای دیگر برای کمپرس گازهای دیگر می توان استفاده کرد.

  10. #20
    مدير باز نشسته
    تاریخ عضویت
    Jun 2010
    نوشته ها
    7,578
    تشکر تشکر کرده 
    3,069
    تشکر تشکر شده 
    4,117
    تشکر شده در
    2,249 پست
    قدرت امتیاز دهی
    866
    Array

    پیش فرض انواع تقطیر

    روشهای مختلفی برای جداسازی مواد اجزای سازنده یک محلول وجود دارد که یکی از این روشها فرایند تقطیر می‌باشد در روش تقطیر جداکردن اجزاء یک مخلوط ، از روی اختلاف نقطه جوش آنها انجام می‌گیرد .تقطیر ، در واقع ، جداسازی فیزیکی برشهای نفتی است که اساس آن ، اختلاف در نقطه جوش هیدروکربنهای مختلف است. هر چه هیدروکربن سنگینتر باشد، نقطه جوش آن زیاد است و هر چه هیدروکربن سبکتر باشد، زودتر خارج می‌شود.
    تقطیر در عمل به دو روش زیر انجام می‌گیرد. روش اول شامل تولید بخار از طریق جوشاندن یک مخلوط مایع ، سپس میعان بخار ، بدون اینکه هیچ مایعی مجددا به محفظه تقطیر بازگردد. در نتیجه هیچ مایع برگشتی وجود ندارد. در روش دوم قسمتی از بخار مایع شده به دستگاه تقطیر باز می‌گردد و به صورتی که این مایع برگشتی در مجاورت بخاری که به طرف مبرد می‌رود قرار می‌گیرد. هر کدام از این روشها می‌توانند پیوسته یا ناپیوسته باشند.
    تقطیر، معمولترین روشی است که برای تخلیص مایعات به کار می رود. دراین عمل مایع را به کمک حرارت تبخیر می کنند و بخار مربوطه را در ظرف جداگانه ای متراکم می کنند و محصول تقطیر را بدست می آورند. چنانچه ناخالصیهای موجود در مایع اولیه فرار نباشند، در باقی مانده تقطیر به جا می مانند و تقطیر ساده جسم را خالص میکند. در صورتی که ناخالصیها فرار باشند، تقطیر جزء به جزء مورد احتیاج خواهد بود.
    چنانچه ناخالصي هاي موجود در مايع اوليه فرار نباشد در باقيمانده تقطير به جا مي ماند و تقطير ساده نمونه را خالص مي كند. در صورتيكه فرار باشند تقطير جز به جز مورد نياز خواهد بود. اگر فقط يك ماده فرار بوده و اختلاف نقطه ي جوش اين ماده با ناخالصي هاي موجود در آن زياد باشد (حدود 30 درجه) مي توان براي جدا كردن اين ماده از ناخالصي ها از تقطير ساده استفاده نمود. از تقطير ساده معمولا در جداسازي مخلوط مايعاتي استفاده مي شود كه نقطه ي جوشي در محدوده 40 تا 150 درجه دارند زيرا در دماي بالاتر از 150 درجه بسياري از تركيبات آلي تجزيه مي شوند ودر دماي جوش كمتر از 40 درجه مقدار زيادي از مايع در ضمن تقطيرهدر مي رود.
    در تقطير مخلوطي ازدو يا چند جسم فشاربخار كل تابعي از فشار بخار هر يك از اجزا و كسر مولي آنه مي باشد. بر اساس قانون رائول فشار بخار جزيي يك تركيب فرار در يك محلول ايده آل با حاصلضرب فشار بخار در كسر مولي آن برابر است. بنابراين در بخار موجود بر سطح دو يا چند جز محلول فرار ذرات كليه اجزا شركت كننده در محلول يافت مي شود. رابطه بين فشار بخار كل (Pt) با فشار جزيي (Pi) و كسر مولي اجزا (Xi) به صورت زير است:
    ...+Pt = PaXa + PbXb + PcXc
    اگر در محلولي شامل دو ماده شيميايي فرار يك جز داراي فشار بخار بيشتري از جز ديگر باشد بخار حاصل از آن در مقايسه با مايع داراي درصد بيشتري از جسم فرارتر خواهد بود.
    ظروف معمولي در خلل و شكاف هاي جدار خود داراي بسته ها ي هواي محبوس مي باشند. با ريختن مايع در ظرف محفظه بسته ها از بخار پر مي شود. وقتي كه دماي مايع افزايش مي يابد بخار آنقدر به حالت متراكم باقي مي ماند تا اينكه از فشار بخار روي مايع بيشتر شود در اين حالت بخار به دام افتاده افزايش حجم پيدا مي كند و به صورت حباب هايي به سطح مايع رسيده و خارج مي گردد. حالت به هم خوردگي حاصل از حباب ها (جوش) حباب هاي هواي بيشتري را به داخل مايع كشانده و فرايند با تشكيل بخار ادامه مي يابد.
    با حرارت دادن مايعات درظروف شيشه اي كه داراي سطوحي نسبتا صاف و يكنواخت مي باشند حالت جوش ايجاد نمي شود و اگر درجه حرارت به اندازه كافي افزايش يابد به حالت انفجاري تبخير مي گردند. براي اجتناب از خطرات مربوط به جوشش ناگهاني (به صورت ضربه اي) منبعي براي دميدن حباب ها به درون مايع قبل از حرارت دادن و عمل جوش لازم است. در شرايط معمولي (فشارجو) اين منبع سنگ جوش مي باشد. سنگ جوش دانه هايي حاوي خلل ريز در خود بوده كه در آن مولكولهاي هوا حبس شده اند. با قرار گرفتن اين دانه ها در محلول حباب ها از سطح آنها تشكيل شده و از جوشيدن انفجاري و تاخير در جوش جلوگيري مي نمايد.

    FG12 15
    انواع تقطیر :
    تقطير ساده:
    به عنوان مثال هنگاميكه ناخالصي غير فراري مانند شكر به مايع خالصي اضافه مي شود فشار بخار مايع تنزل مي يابد. علت اين عمل آن است كه وجود جز غير فرار به مقدار زيادي غلظت جز اصلي فرار را پايين مي آورد يعني ديگر تمام مولكولهايي كه در سطح مايع موجودند مولكولهاي جسم فرار نيستند و بدين ترتيب قابليت تبخير مايع كم مي شود.
    تقطير ساده را مي توان به دوصورت تعريف كرد :
    تقطير ساده غير مداوم
    تقطير ساده مداوم
    تقطیر ساده غیر مداوم :
    در این روش تقطیر ، مخلوط حرارت داده می‌شود تا بحال جوش درآید بخارهایی که تشکیل می‌شود غنی از جزء سبک مخلوط می‌باشد پس از عبور از کندانسورها ( میعان کننده ها ) تبدیل به مایع شده ، از سیستم تقطیر خارج می‌گردد. به تدریج که غلظت جزء سنگین مخلوط در مایع باقی مانده زیاد می‌شود، نقطه جوش آن بتدریج بالا می‌رود. به این ترتیب ، هر لحظه از عمل تقطیر ، ترکیب فاز بخار حاصل و مایع باقی مانده تغییر می‌کند.
    تقطیر ساده مداوم :
    در این روش ، مخلوط اولیه (خوراک دستگاه) بطور مداوم با مقدار ثابت در واحد زمان ، در گرم کننده گرم می‌شود تا مقداری از آن بصورت بخار درآید، و به محض ورود در ستون تقطیر ، جزء سبک مخلوط بخار از جزء سنگین جدا می شود و از بالای ستون تقطیر خارج می‌گردد و بعد از عبور از کندانسورها ، به صورت مایع در می‌آید جزء سنگین نیز از ته ستون تقطیر خارج می‌شود. قابل ذکر است که همیشه جزء سبک مقداری جزء سنگین و جزء سنگین نیز دارای مقداری از جزء سبک است.
    در تقطير يك ماده خالص چنانچه مايع زياده از حد گرم نشود درجه حرارتي كه در گرماسنج ديده مي شود يعني درجه حرارت دهانه ي خروجي با درجه حرارت مايع جوشان در ظرف تقطير يعني درجه حرارت ظرف يكسان است. درجه حرارت دهانه خروجي كه به اين ترتيب به نقطه جوش مايع مربوط مي شود در طول تقطير ثابت مي ماند.
    هرگاه در مايعي که تقطير مي شود ناخالصي غير فراري موجود باشد درجه حرارت دهانه خروجي همان درجه حرارت مايع خالص است زيرا ماده اي كه بر روي حباب گرماسنج متراكم مي شود به ناخالصي آلوده نيست. ولي درجه حرارت ظرف به علت كاهش فشار بخار محلول بالا مي ررود. در جريان تقطير درجه حرارت ظرف نيز افزايش مي يابد.زيرا كه غلظت ناخالصي با تقطير جز فرار به تدريج زياد مي شود و فشار بخار مايع بيشتر پايين مي ايد ، با وجود اين درجه حرارت دهانه خروجي مانند مايع خالص ثابت مي ماند. رابطه كمي موجود بين فشار بخار وتركيب مخلوط همگن مايع (محلول) به قانون رائول معروف است.
    تقطیر تبخیر آنی (ناگهانی):
    وقتی محلول چند جزئی مانند نفت خام را حرارت می‌دهیم ، اجزای تشکیل دهنده آن بترتیب که سبکتر هستند، زودتر بخار می‌شود. برعکس وقتی بخواهیم این بخارها را سرد و دوباره تبدیل به مایع کنیم، هر کدام که سبکتر باشد دیرتر مایع می‌گردد. با توجه به این خاصیت ، می‌توانیم نفت خام را به روش دیگری که به آن "تقطیر آنی" گویند، تقطیر نماییم. در این روش ، نفت خام را چنان حرارت می‌دهیم که ناگهان همه اجزای آن تبدیل به بخار گردد و سپس آنها را سرد می‌کنیم تا مایع شود. در اینجا ، بخارها به ترتیب سنگینی ، مایع می‌شوند یعنی هرچه سنگین‌تر باشند، زودتر مایع می‌گردند و بدین گونه ، اجزای نفت خام را با ترتیب مایع شدن از هم جدا می‌کنیم.

    تقطیر در خلا :
    با توجه به اینکه نقطه جوش مواد سنگین نفتی نسبتا بالاست و نیاز به دما و انرژی بیشتری دارد، و از طرف دیگر ، مقاومت این مواد در مقابل حرارت بالا کمتر می‌باشد و زودتر تجزیه می‌گردند، لذا برای جداکردن آنها از خلا نسبی استفاده می‌شود. در این صورت مواد دمای پایین‌تر از نقطه جوش معمولی خود به جوش می‌آیند. در نتیجه ، تقطیر در خلا ، دو فایده دارد: اول این که به انرژی و دمای کمتر نیاز است، دوم اینکه مولکولها تجزیه نمی‌شوند. امروزه در بیشتر موارد در عمل تقطیر ، از خلا استفاده می‌شود. یعنی این که: هم تقطیر جزء به جزء و هم تقطیر آنی را در خلا انجام می‌دهند.

    تقطیر به کمک بخار آب :
    یکی دیگر از طرق تقطیر آن است که بخار آب را در دستگاه تقطیر وارد می‌کنند در این صورت بی آنکه خلاء‌ای ایجاد گردد، اجزای نفت خام در درجه حرارت کمتری تبخیر می‌شوند. این مورد معمولا در زمانی انجام می‌شود که در نقطه جوش آب ، فشار بخار اجزای جدا شونده بالا باشد تا به همراه بخار آب از مخلوط جدا گردند.
    غالبابه كمك تقطير با بخار آب مي توان تركيبات آلي فراري را كه با آب مخلوط نمي شوند يا تقريبا با آن غير قابل اختلاط هستند تفكيك و تخليص كرد. در اين روش مخلوط آب وجسم آلي با هم تقطير مي شوند.عمل تقطير يك مخلوط غير قابل امتزاج در صورتي كه يكي از اجزا آب باشد تقطير با بخار آب ناميده مي شود.
    تقطیر آزئوتروپی :
    از این روش تقطیر معمولا در مواردی که نقطه جوش اجزاء مخلوط بهم نزدیک باشند استفاده می‌شود، جداسازی مخلوط اولیه ، با افزایش یک حلال خاص که با یکی از اجزای کلیدی ، آزئوتوپ تشکیل می‌دهد امکان‌پذیر است. آزئوتروپ محصول تقطیر یا ته مانده را از ستون تشکیل می‌دهد و بعد حلال و جزء کلیدی را از هم جدا می‌کند. اغلب ، ماده افزوده شده آزئوتروپی با نقطه جوش پایین تشکیل می‌دهد که به آن شکننده آزئوتروپ می‌گویند. آزئوتروپ اغلب شامل اجزای خوراک است، اما نسبت اجزای کلیدی به سایر اجزای خوراک خیلی متفاوت بوده و بیشتر است.
    مثالی از تقطیر آزئوتروپی استفاده از بنزن برای جداسازی کامل اتانول از آب است، که آزئوتروپی با نقطه جوش پایین با 6/95% وزنی الکل را تشکیل می‌دهد. مخلوط آب- الکل با 95% وزنی الکل به ستون تقطیر آزئوتروپی افزوده می‌شود و جریان جریان غنی از بنزن از قسمت فوقانی وارد می‌شود. محصول ته مانده الکل تقریبا خالص است وبخار بالایی یک آزئوتروپی سه‌گانه است. این بخار مایع شده، به دو فاز تقسیم می‌شود. لایه آلی برگشت داده شده، لایه آلی به ستون بازیافت بنزن فرستاده می‌شود. همه بنزن و مقدار الکل در بخار بالایی گرفته شده، به ستون اول روانه می‌شوند. جریان انتهایی در ستون سوم تقطیر می‌شود تا آب خالص و مقداری آزئوتروپ دوگانه از آن بدست آید.
    تقطیر استخراجی :
    جداسازی اجزای با نقطه جوش تقریبا یکسان از طریق تقطیر ساده مشکل است حتی اگر مخلوط ایده آل باشد و به دلیل تشکیل آزئوتروپ ، جداسازی کامل آنها غیر ممکن است برای چنین سیستم هایی با افزایش یک جزء سوم به مخلوط که باعث تغییر فراریت نسبی ترکیبات اولیه می‌شود، جداسازی ممکن می‌شود. جزء افزوده شده باید مایعی با نقطه جوش بالا باشد، قابلیت حل شدن در هر دو جزء کلیدی را داشته باشد و از لحاظ شیمیایی به یکی از آنها شبیه باشد. جزء کلیدی که به حلال بیشتر شبیه است ضریب فعالیت پایین تری از جزء دیگر محلول دارد، در نتیجه جداسازی بهبود می یابد این فرآیند ، تقطیر استخراجی نام دارد.
    مثالی از تقطیر استخراجی، استفاده از فور فورال در جداسازی بوتادی‌ان و بوتن است، فورفورال که حلالی به شدت قطبی است، فعالیت بوتادی ان را بیش تر از بوتن و بوتان کم می‌کند و غلظت بوتادی ان وفورفورال وارد قسمت فوقانی ستون تقطیر استخراجی شود، با انجام تقطیر بوتادی ان از فورفورال جدا می‌شود.
    تقطیر جزء به جزء :
    اجزای سازنده محلول شامل دو یا چند فرار را که از قانون رائول پیروی می‌کنند، می‌توان با فرایند تقطیر جزء به جزء از هم جدا کرد. طبق قانون رائول ، فشار بخار محلول برابر با مجموع اجزای سازنده آن است و سهم هر جزء برابر با حاصلضرب کسر مولی آن جزء به جزء در فشار بخار آن در حالت خاص است. در تقطیر محلولی از B و A ، غلظت A در بخاری که خارج شده و مایع می‌شود، بیش از غلظت آن در مایع باقی مانده است. با ادامه عمل تقطیر ، ترکیب درصد اجزا در بخار و مایع دائما تغییر می‌کند و این در هر نقطه عمومیت دارد. با جمع آوری مایعی که از سردشدن بخار حاصل می‌شود و از تقطیر مجدد آن و با تکراری پی در پی این عمل ، سرانجام می‌توان اجزای سازنده مخلوط اصلی را به صورتی واقعا خالص بدست آورد.
    از نظر سهولت در اينجا فقط محلولهاي ايده آل دو تايي را كه محتوي دو جز فرار RوS باشند در نظر مي گيريم. محلول ايده ال به محلولي اطلاق مي شود كه در آن اثرات بين مولكولهاي متجانس مشابه با اثرات بين مولكولهاي غير متجانس باشد.گرچه فقط محلولهاي ايده ال به طور كامل از قانون رائول پيروي مي كنند ولي بسياري از محلولهاي آلي به محلولهلي ايده آل نزديك هستند.
    تقطير جزبه جز محلول هاي غير ايده ال
    گرچه بيشتر مخلوط هاي يكنواخت مايع به صورت محلولهاي ايده ال عمل مي كنند ولي نمونه هاي بسياري وجود دارد كه نحوه عمل آنها ايده آل نيست.در اين محلولها مولكولهاي غير متجانس در مجاورت يكديگر به طور يكسان عمل نمي كنند انحراف حاصل از قانون رائول به دو روش انجام ميگيرد:
    بعضي از محلولها فشار بخار بيشتري از فشار بخار پيش بيني شده ظاهر مي سازندوگفته مي شود كه انحراف مثبت دارند. بعضي ديگر فشار بخار كمتري از فشار پيش بيني شده آشكار مي كنندومي گويند كه انحراف منفي نشان مي دهند.
    در انحراف مثبت نيروي جاذبه بين مولكولهاي مختلف دو جز سازنده ضعيف تر از نيروي جاذبه بين مولكولهاي مشابه يك جز است و در نتيجه در حدود تركيب درصد معيني فشار بخار مشترك دو جز بزرگتر از فشار بخار جز خالصي مي شود كه فرارتر است. بنابراين مخلوط هايي كه تركيب درصد آنها در اين حدود باشد درجه جوش كمتري از هر يك از دو جز خالص دارند.مخلوطي كه در اين حدود حداقل درجه جوشش را دارد بايد به صورت جز سوم در نظر گرفته شود.اين مخلوط نقطه جوش ثابتي دارد زيرا تركيب درصد بخاري كه در تعادل با مايع است با تركيب درصد خود مايع برابر است.چنين مخلوطي را آزئوتروپ يا مخلوط آزئوتروپ با جوشش مينيمم مي نامند. از تقطير جز به جز اين مخلوط ها هر دو جز به حالت خالص به دست نمي آيد بلكه جزيي كه تركيب درصد آن از تركيب درصد آزئوتروپ بيشتر باشد توليد مي شود.
    در انحراف منفي از قانون رائول نيروي جاذبه بين مولكولهاي مختلف دو جز قويتر از نيروي جاذبه بين مولكولهاي مشابه يك جز است ودر نتيجه تركيب درصد معيني فشار بخار مشترك دو جز كمتر از فشار بخار جز خالص مي شود كه فرارتر است.بنابراين مخلوط هايي كه تركيب درصد آنها در اين حدود باشد حتي نسبت به جز خالصي كه نقطه جوش بيشتري دارد در درجه حرارت بالاتري مي جوشند.در اينجا تركيب درصد به خصوصي وجود دارد كه به آزئو تروپ با جوشش ماكسيمم مربوط مي شود. تقطير جز به جز محلولهايي كه تركيب درصدي غير از تركيب درصد آزئوتروپ دارندباعث خروج جزيي مخلوط مي شود كه تركيب درصد آن از آزئوتروپ بيشتر باشد.
    ستونهاي تقطيرجز به جز:
    اين ستونها انواع متعددي دارد ولي در تمام آنها خصلت هاي مشابهي وجود دارد. اين ستونها مسير عمودي را به وجود مي آورند كه بايد بخار در انتقال از ظرف تقطير به مبرد از آن بگذرد. اين مسير به مقدار قابل ملاحظه اي از مسير دستگاه تقطير ساده طويل تر است. هنگام انتقال بخار از ظرف تقطير به بالاي ستون مقداري از بخار متراكم مي شود.چنان چه قسمت پايين اين ستون نسبت به قسمت بالاي آن در درجه حرارت بيشتري نگه داري شود مايع متراكم شده و در حالي كه به پايين ستون مي ريزد دوباره به طور جزيي تبخير مي شود .بخار متراكم نشده همراه بخاري كه از تبخير مجدد مايع متراكم شدهحاصل مي شود در داخل ستون بالاتر مي رود واز يك سري تراكم وتبخير مي گذرد. اين اعمال باعث تقطير مجدد مايع مي شود و به طوريكه در هر يك از مراحل فاز بخاري كه به وجود مي آيد نسبت به جز فرارتر غني تر مي شود.ماده متراكم شده اي كه به پايين ستون مي ريزددر مقايسه با بخاري كه با آن در تماس است در هر يك از مراحل نسبت جزيي كه فراريت كمتري دارد غني تر مي شود.
    در شرايط ايده ال بين فازهاي مايع و بخار در سراسر ستون تعادل برقرار مي شود و فاز بخار بالايي تقريبا به طور كامل از جز فرارتر تشكيل مي شود و فاز مايع پاييني نسبت به جزيي كه فراريت كمتري دارد غني تر مي شود.
    مهم ترين شرايطي كه براي ايجاد اين حالت لازم است عبارتند از :
    تماس كامل و مداوم بين فازهاي بخار و مايع در ستون
    حفظ افت مناسبي از درجه حرارت در طول ستون
    طول كافي ستون
    اختلاف كافي در نقاط جوش اجزاي مخلوط مايع
    چنانچه دو شرط اول كاملا مراعات شود مي توان با يك ستون طويل تركيباتي كه اختلاف كمي در نقطه ي جوش دارند به طور رضايت بخش از هم جدا كرد زيرا طول ستون مورد لزوم و اختلاف نقاط جوش اجزا با هم نسبت عكس دارند. معمولترين راه ايجاد تماس لازم در بين فازهاي مايع آن است كه ستون با مقداري ماده بي اثر مانند شيشه يا سراميك يا تكه هاي فلزي به اشكال مختلف كه سطح تماس وسيعي را فراهم مي كند پر شود. يكي از راه هاي بسيار موثر ايجاد اين تماس بين مايع و بخار آن است كه نوار چرخاني از فلز يا تفلون كه با سرعت زيادي در داخل ستون بچرخد به كار رود.
    اين عمل نسبت به ستون هاي پر شده اي كه قدرت مشابهي دارند اين مزيت را دارد كه ماده كمي را در داخل ستون نگاه مي دارد (منظور از اين نگه داري مقدار مايع و بخاري است كه براي حفظ شرايط تعادل در داخل ستون لازم است.)

    تقطیر تبخیر ناگهانی
    در این نوع تقطیر ، مخلوطی از مواد نفتی که قبلا در مبدلهای حرارتی و یا کوره گرم شده‌اند، بطور مداوم به ظرف تقطیر وارد می‌شوند و تحت شرایط ثابت ، مقداری از آنها به صورت ناگهانی تبخیر می‌شوند. بخارات حاصله بعد از میعان و مایع باقیمانده در پایین برج بعد از سرد شدن به صورت محصولات تقطیر جمع آوری می‌شوند. در این نوع تقطیر ، خلوص محصولات چندان زیاد نیست.
    تقطیر با مایع برگشتی ( تقطیر همراه با تصفیه )
    در این روش تقطیر ، قسمتی از بخارات حاصله در بالای برج ، بعد از میعان به صورت محصول خارج شده و قسمت زیادی به داخل برج برگردانده می‌شود. این مایع به مایع برگشتی موسوم است. مایع برگشتی با بخارات در حال صعود در تماس قرار داده می‌شود تا انتقال ماده و انتقال حرارت ، صورت گیرد. از آنجا که مایعات در داخل برج در نقطه جوش خود هستند، لذا در هر تماس مقداری از بخار، تبدیل به مایع و قسمتی از مایع نیز تبدیل به بخار می‌شود.
    نتیجه نهایی مجوعه این تماسها ، بخاری اشباع از هیدروکربنهای با نقطه جوش کم و مایعی اشباع از مواد نفتی با نقطه جوش زیاد می‌باشد. در تقطیر با مایع برگشتی با استفاده از تماس بخار و مایع ، می‌توان محصولات مورد نیاز را با هر درجه خلوص تولید کرد، مشروط بر اینکه به مقدار کافی مایع برگشتی و سینی در برج موجود باشد. بوسیله مایع برگشتی یا تعداد سینیهای داخل برج می‌توانیم درجه خلوص را تغییر دهیم. لازم به توضیح است که ازدیاد مقدار مایع برگشتی باعث افزایش میزان سوخت خواهد شد. چون تمام مایع برگشتی باید دوباره به صورت بخار تبدیل شود.
    امروزه به علت گرانی سوخت ، سعی می‌شود برای بدست آوردن خلوص بیشتر محصولات ، به جای ازدیاد مایع برگشتی از سینیهای بیشتری در برجهای تقطیر استفاده شود. زیاد شدن مایع برگشتی موجب زیاد شدن انرژی می‌شود. برای همین ، تعداد سینیها را افزایش می‌دهند. در ابتدا مایع برگشتی را صد درصد انتخاب کرده و بعد مرتبا این درصد را کم می‌کنند و به صورت محصول خارج می‌کنند تا به این ترتیب دستگاه تنظیم شود.
    انواع مایع برگشتی
    • مایع برگشتی سرد:
    این نوع مایع برگشتی با درجه حرارتی کمتر از دمای بالای برج تقطیر برگردانده می‌شود. مقدار گرمای گرفته شده ، برابر با مجموع گرمای نهان و گرمای مخصوص مورد نیاز برای رساندن دمای مایع به دمای بالای برج است.
    • مایع برگشتی گرم:
    مایع برگشتی گرم با درجه حرارتی برابر با دمای بخارات خروجی برج مورد استفاده قرار می‌گیرد.
    • مایع برگشتی داخلی:
    مجموع تمام مایعهای برگشتی داخل برج را که از سینی‌های بالا تا پایین در حرکت است، مایع برگشتی داخلی گویند. مایع برگشتی داخلی و گرم فقط قادر به جذب گرمای نهان می‌باشد. چون اصولا طبق تعریف اختلاف دمایی بین بخارات و مایعات در حال تماس وجود ندارد.
    • مایع برگشت دورانی:
    این نوع مایع برگشتی ، تبخیر نمی‌شود. بلکه فقط گرمای مخصوص معادل با اختلاف دمای حاصل از دوران خود را از برج خارج می‌کند. این مایع برگشتی با دمای زیاد از برج خارج شده و بعد از سرد شدن با درجه حرارتی کمتر به برج برمی‌گردد. معمولا این نوع مایع برگشتی درقسمتهای میانی یا درونی برج بکار گرفته می‌شود و مایع برگشتی جانبی هم خوانده می‌شود. اثر عمده این روش ، تقلیل حجم بخارات موجود در برج است.
    نسبت مایع برگشتی
    نسبت حجم مایع برگشتی به داخلی و محصول بالایی برج را نسبت مایع برگشتی گویند. از آنجا که محاسبه مایع برگشتی داخلی نیاز به محاسبات دقیق دارد، لذا در پالایشگاهها ، عملا نسبت مایع برگشتی بالای برج به محصول بالایی را به عنوان نسبت مایع برگشتی بکار می‌برند.
    تقطیر نوبتی
    این نوع تقطیرها در قدیم بسیار متداول بوده، ولی امروزه بعلت نیاز نیروی انسانی و ضرورت ظرفیت زیاد ، این روش کمتر مورد توجه قرار می‌گیرد. امروزه تقطیر نوبتی ، صرفا در صنایع دارویی و رنگ و مواد آرایشی و موارد مشابه بکار برده می‌شود و در صنایع پالایش نفت در موارد محدودی مورد استفاده قرار می‌گیرد. بنابراین در موارد زیر ، تقطیر نوبتی از نظر اقتصادی قابل توجه می‌باشد.
    • تقطیر در مقیاس کم
    • ضرورت تغییرات زیاد در شرایط خوراک و محصولات مورد نیاز
    • استفاده نامنظم از دستگاه
    • تفکیک چند محصولی
    • عملیات تولید متوالی با فرآیندهای مختلف

    تقطیر مداوم
    امروزه بعلت اقتصادی بودن مداوم در تمام عملیات پالایش نفت از این روش استفاده می‌شود. در تقطیر مداوم برای یک نوع خوراک مشخص و برشهای تعیین شده شرایط عملیاتی ثابت بکار گرفته می‌شود. بعلت ثابت بودن شرایط عملیاتی در مقایسه با تقطیر نوبتی به مراقبت و نیروی انسانی کمتری احتیاج است. با استفاده از تقطیر مداوم در پالایشگاهها مواد زیر تولید می‌شود:
    گاز اتان و متان بعنوان سوخت پالایشگاه ، گاز پروپان و بوتان بعنوان گاز مایع و خوراک واحدهای پتروشیمی ، بنزین موتور و نفتهای سنگین بعنوان خوراک واحدهای تبدیل کاتالیستی برای تهیه بنزین با درجه آروماتیسیته بالاتر ، حلالها ، نفت سفید ، سوخت جت سبک و سنگین ، نفت گاز ، خوراک واحدهای هیدروکراکینگ و واحدهای روغن سازی ، نفت کوره و انواع آسفالتها.

    ● كتاب شيمي آلي تجربي نوين / جلد اول وجلد دوم / نويسندگان: رابرتس- گيلبرت-ردوالد- وينگرو / مترجم: هوشنگ پير الهي
    ● كتاب شيمي عملي و آلي / مولفين: آقايان جليليان- وارسته مرادي- احمدي گلسفيدي

صفحه 2 از 4 نخستنخست 1234 آخرینآخرین

برچسب ها برای این تاپیک

علاقه مندی ها (بوک مارک ها)

علاقه مندی ها (بوک مارک ها)

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست در پست خود ضمیمه کنید
  • شما نمیتوانید پست های خود را ویرایش کنید
  •  

http://www.worldup.ir/