نمایش نتایج: از شماره 1 تا 9 , از مجموع 9

موضوع: ╬♥╬ مقالات ریاضی ╬♥╬

Threaded View

پست قبلی پست قبلی   پست بعدی پست بعدی
  1. #6
    کاربر فعال
    تاریخ عضویت
    Dec 2010
    نوشته ها
    28,440
    تشکر تشکر کرده 
    12,424
    تشکر تشکر شده 
    11,190
    تشکر شده در
    5,632 پست
    قدرت امتیاز دهی
    7108
    Array

    پیش فرض

    اعداد دو قلو

    آیا میدانید به چه اعدادی دوقلو گویند ؟
    کوششی در جهت اثبات حدس اعداد دوقلو است که توسط گلدستون ( Goldston ) و همکارانش ( Hotohashi, Pintz and Yildirim ) ارائه شده است. حدودا یک سال قبل ، اثباتی به وسیله گلدستون و یلدریم ( Yildirim ) مطرح شد اما اشتباهی در آن صورت گرفته بود که توسط گرانویل ( Granville ) و ( Soundararajan ) پیدا شد و آن کوشش بی نتیجه باقی ماند . اما این بار گرانویل اعتقاد دارد با توجه به بررسی های انجام شده تلاشهای گلدستون و همکارانش درست است. گلدستون نیز طی مصاحبه ایی که با Mercury News انجام داده کار 20 ساله اش و تلاش ناموفقی را که داشت بیان نموده و ادعا کرده این بار کار او و همکارانش درست است.
    همان طور که می دانید اعداد دو قلو اعداد اولی هستند که در دو واحد با هم اختلاف دارند به عنوان مثال جفت های 3 و 5 از جمله جفت اعداد دو قلوهستند. در واقع این جفت ها به صورت p و p+2 می باشند.
    این نام اولین بار توسط پل استکر (1919-1892) به این اعداد داده شد.
    هنگامیکه هنوز مسئله چگونگی توزیع اعداد اول دوقلو حل نشده بود وی بران اثبات کرد که مجموع معکوسات این اعداد حتی وقتی که تعداد آنها نامتناهی باشد به عدد خاصی میل می کند. این نتیجه به نام قضیه بران نامیده می شود و عدد B ثابت بران معروف است و تقریبا برابر با 1.902160583104 اسنت .جالب به نظر می رسد که بدانید محاسبات بسیار دقیق توماس نیکلی در سال 1995 برای یافتن ثابت بران باعث آشکار شدن یکی از مشکلات جدی میکروپروسسورهای اینتل شد.
    باید توجه کرد که مجموع معکوسات کلیه اعداد اول همگرا نیست که این نتیجه حتی از حکم نامتناهی بودن اعداد اول نیز قویتر است. قضیه بران نشان می دهد که اعداد اول دوقلو در میان کلیه اعداد اول بسیار پراکنده اند.
    اما ایا اعداد دوقلو نامتناهی هستند؟ حدس اعداد دوقلو بر این سوال پایه گذاری شده است تعدادجفت اعداد دوقلو نامتناهی هستند.
    اگر چه این مساله بیش از صد ساله است که شناخته شده اما همچنان حل نشده باقی مانده است.هاردی و رایت (1979) با بررسی جزئیات این حدس آن را تصدیق نمودند. البته هاردی و رایت بیان نمودند که اثبات و یا رد این حدس از دسترس ریاضیات کنونی خارج می باشد.
    اگر (1)p(n) , .... p دنباله ایی از همه اعداد اول باشند ، آیا تعداد نامتناهی n وجود دارد که تفاضل (p(n+1 و (p(n کمتر از مثلا 10 باشد؟ اگر بتوان این مساله را حل نمود می توان گامی اساسی در جهت حل حدس دو قلو برداشت. اساس اثبات گدستون بر همین پایه است ایده اثبات به این روش فرمول زیر است و در حقیقت پیدا کردن یک کران بالا یا مقداری برای D است.
    [(D = lim infn → ∞ [{p(n+1) - p(n)}/log p(n
    آنچه از نظریه اعداد اول دانسته می شود این است که D باید کمتر از یک باشد در سال 1926 هاردی و لیتل وود ( Hardy and Littlewood ) با شرط درست بودن فرضیه ریمان تعمیم یافته مقدار 2/3 برای D پیدا کردند ( فرضیه ریمان فرضیه ایی که بیان می کنند قسمت حقیقی کلیه ریشه های تابع زتا ی ریمان که دارای قمست حقیقی مثبت هستند برابر ½ است.) این روند ادامه پیدا کرد تا اینکه تقریبا دو سال قبل گلدستون و یلدریم نشان دادند که این مقدار مساوی صفر است البته همان طور که اشاره شد آن اثبات اشتباهی داشت که اکنون آن را تصحیح کرده اند.


    d79gibl38tqrm7is3x77


     


    x5lc1ibig9cekrsxpqe5








  2. کاربر مقابل از R A H A عزیز به خاطر این پست مفید تشکر کرده است:


برچسب ها برای این تاپیک

علاقه مندی ها (بوک مارک ها)

علاقه مندی ها (بوک مارک ها)

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست در پست خود ضمیمه کنید
  • شما نمیتوانید پست های خود را ویرایش کنید
  •  

http://www.worldup.ir/