آزمونهای غير مخرب
بازرسی فنی از لحاظ زمانی به چهار دسته تقسیم میشود:
الف-بازرسی قبل از ساخت
ب- بازرسی حین ساخت
پ-بازرسی بعد از ساخت
ت-بازرسی دوره ای (نگهداری)
قبل از ساخت بازرس فنی موظف است که طراحی ها و نقشه ها را چک کند و مقادیر کمی و کیفی ساخت را محاسبه نماید.اینکار از طریق استانداردهای معرفی شده در ذیل انجام میگردد.مثلا بررسی فرمهای wps و pqr ارائه شده توسط شرکت سازنده.
حین ساخت باید به نحوه ساخت دقت نماید و آنها را با استاندارد مطابقت دهد.بخصوص بازرسی چشمی (VT) در این قسمت بسیار موثر میباشد مثلا در جوشکاری لوله ها و یا مخازن به انتخاب نوع جوشکاری و همچنین استفاده از الکترودهای مناسب دقت کند.
بعد از ساخت باید از طریق تستهای غیر مخرب و یا هیدروتست از عدم وجود عیوب مطمئن گردد.
قسمت آخر نگهداری (maintenance) میباشد که با بازرسی های دوره ای و تستهای غیر مخرب بخصوص ضخامت سنجی از دستگاه حفاظت نماید.
برای بازرسی لوله ها از استاندارد زیر که بسیار متداول است استفاده میگردد:
Process Piping :ASME CODE FOR PRESSURE PIPING, B31.3
Power Piping: ASME CODE FOR PRESSURE PIPING, B31.1
Specification for Line Pipe:API 5L
API 1104: Welding of Pipelines and Related Facilities
برای بازرسی مخازن ذخیره نفت از استاندارد زیر استفاده میشود:
API 620: Design and Construction of Large, Welded, Low-Pressure Storage Tanks
API 650: Welded Steel Tanks for Oil Storage
برای بازرسی ظروف تحت فشار:
ASME VIII:Rules for construction of pressure vessels
آزمونهاي غير مخرب ( Non Destvuctive Testing)
<DIV style="DIRECTION: rtl"><DIV class=posts>
مهندسين معمولاً عادت دارند خواص يك ماده را روي نمونههاي مخصوصي كه از همين ماده تهيه شدهاند با آزمونهاي استاندارد ارزيابي كنند. اطلاعات بسيار ارزشمندي از اين آزمونهاي به دست ميآيد كه شامل خواص كششي، فشاري، برشي و ضربهاي ماده مورد نظر است. اما اين آزمونها ماهيت تخريبي دارند. بعلاوه خواص ماده به گونهاي كه با آزمونهاي استاندارد تا حد تخريب تعيين ميشود، به يقين راهنماي روشني در مورد مشخصات كارايي قطعهاي نيست كه بخش پيچيدهاي از يك مجموعه مهندسي را تشكيل ميدهد.
در طي توليد و حمل و نقل امكان دارد كه انواع عيوب با اندازههاي مختلف در ماده يا قطعه به وجود آيند. ماهيت و اندازه دقيق هر عيب روي عمليات بعدي آن قطعه تاثير خواهد داشت. عيوب ديگري نيز مانند تركهاي حاصل از خستگي يا خوردگي ممكن است در طي كار قطعه ايجاد شوند. بنابراين براي آشكار سازي وجود عيبها در مرحله توليد و نيز جهت تشخيص و تعيين سرعت رشد اين نقصها در طول عمر قطعه يا دستگاه ، داشتن وسائل مطمئن ضروري است.
منشا بعضي عيوب كه در مواد و قطعات يافت ميشوند، عبارتند از :
- عيوبي كه ممكن است طي ساخت مواد خام يا توليد قطعات ريختگي به وجود آيند (ناخالصيهاي سرباره، حفرههاي گازي، حفرههاي انقباضي، تركهاي تنشي و ... )
- عيوبي كه ممكن است طي توليد قطعات به وجود آيند (عيوب ماشينكاري، عيوب عمليات حرارتي، عيوب جوشكاري، تركهاي ناشي از تنشهاي پسماند و ...)
- عيوبي كه ممكن است طي مونتاژ قطعات به وجود آيند (كم شدن قطعات، مونتاژ نادرست، تركهاي ناشي از تنش اضافي و ...)
- عيوبي كه در مدت كاربري و حمل و نقل به وجود ميآيند (خستگي، خوردگي، سايش، خزش، ناپايداري حرارتي و ...)
روشهاي مختلف آزمونهاي غيرمخرب در عمل ميتوانند به راههاي بسيار متفاوتي در عيب يابي به كار روند. اعتبار هر روش آزمون غيرمخرب سنجشي از كارايي آن روش در رابطه با آشكارسازي نوع و شكل و اندازه بخصوص عيبها است. بعد از آن كه بازرسي تكميل شد، احتمال معيني وجود دارد كه يك قطعه عاري از يك نوع عيب با شكل و اندازه بخصوص باشد. هر قدر اين احتمال بالاتر باشد اعتبار روش به كار رفته بيشتر خواهد بود. اما بايد اين واقعيت را به خاطر داشت كه بازرسيهاي غيرمخرب براي اغلب قطعات به وسيله انسان انجام ميگيرد و در اصل دو نفر هميشه نميتوانند يك كار تكراري مشابه را بطور دقيق همانند يكديگر انجام دهند. از اين رو بايد يك ضريب عدم يقين در برآورد اعتبار بازرسي به حساب آورده شود و ارزش تصميماتي رد و يا قبول قطعه بايد از رويدادهاي آماري تخمين زده شود.
نقش بازرسي غيرمخرب اين است كه با ميزان اطمينان معيني ضمانت نمايد كه در زمان بكارگيري قطعه براي بار طراحي، تركهايي به اندازه بحراني شكست در قطعه وجود ندارند. همچنين ممكن است لازم باشد كه با اطمينان، عدم وجود تركهاي كوچكتر از حد بحراني را نيز ضمانت كند. اما رشد تركهاي كوچكتر از حد بحراني. بويژه در مورد قطعاتي كه در معرض بارهاي خستگي قرار دارند و يا در محيطهاي خورنده كار ميكنند، اهميت دارد، بطوريكه اين گونه قطعات، قبل از اين كه شكست ناگهاني در آنها اتفاق بيفتد، به يك حداقل عمر كار مفيد برسند. در برخي حالتها، بازرسيهاي مرتب و متناوب جهت اطمينان از نرسيدن تركها به اندازه بحراني ممكن است ضروري باشد.
بكارگيري ايدههاي مكانيك شكست در طراحي، براي توانايي روشهاي مختلف آزمونهاي غيرمخرب در آشكارسازي تركهاي كوچك، حد و مرز تعيين ميكند. اختلاف بين كوچكترين ترك قابل آشكارسازي و اندازه بحراني آن، ميزان ايمني يك قطعه است.
در هر برنامه خاص بازرسي، تعداد عيوب شناسايي شده (هر چند زياد)، با تعداد واقعي آنها مطابقت پيدا نميكند، بنابراين احتمال شناسايي يك قطعه سالم و بدون عيبهاي با اندازههاي گوناگون كاهش مييابد. اما هنگامي كه قطعات بسيار مهم مورد نظر هستند، سعي بر اين است تا حد امكان عيبهاي بيشتري شناسايي شوند و تمايل به قبول تمام نشانههاي وجود عيبها زياد است. زيرا اگر قطعهاي در طي بازرسي مردود و غيرقابل مصرف معرفي شود، بهتر از آن است كه هنگام استفاده منجر به شكست فاجعه آميز شود. مسلم است مهندسي كه ايدههاي مكانيك شكست را مورد استفاده قرار ميدهد، علاقهمند است كه بداند به چه اندازه عيبها را در هنگام بازرسي مورد نظر داشته باشد. انتخاب روش با اين بررسي اوليه تعيين ميشود و تمام پارامترهاي ديگر در درجه دوم اهميت قرار ميگيرند. براي مثال بازرسي تركهاي مربوط به خستگي قطعات فولادي به روش فراصوتي كه نسبتاً
براحتي قابل اجرا است، در مقابل تجزيه و تحليل به روش جريان گردابي براي آشكارسازي تركهايي به طول 5/1 ميليمتر، كنار گذاشته ميشود زيرا احتمال آشكارسازي اين تركها با فراصوتي 50 درصد و با جريان گردابي 80 درصد است.
يكي از فايدههاي بديهي و روشن به كار بردن صحيح آزمونهاي غيرمخرب، شناسايي عيوبي است كه اگر بدون تشخيص در قطعه باقي بمانند، موجب شكست فاجعه آميز قطعه و در نتيجه بروز خسارتهاي مالي و جاني فراوان خواهند شد. استفاده از اين روشهاي آزمون ميتواند فوايد زيادي از اين بابت ، در بر داشته باشد.
بكارگيري هر يك از سيستمهاي بازرسي متحمل هزينه است، اما اغلب استفاده موثر از روشهاي بازرسي مناسب موجب صرفهجوييهاي مالي قابل ملاحظهاي خواهد شد. نه فقط نوع بازرسي، بلكه مراحل بكارگيري آن نيز مهم است. بكارگيري روشهاي آزمون غيرمخرب روي قطعات ريختگي و آهنگري كوچك بعد از آنكه كليه عمليات ماشينكاري روي آنها انجام گرفت، معمولا بيهوده خواهد بود. در اينگونه موارد بايد قبل از انجام عمليات ماشينكاري پرهزينه قطعات بدقت بازرسي شوند و قطعاتي كه داراي عيوب غيرقابل قبول هستند، كنار گذاشته شوند. بايد توجه داشت كليه معايبي كه در اين مرحله تشخيص داده ميشوند، نميتوانند موجب مردود شدن قطعه از نظر بازرسي باشند. ممكن است قطعهاي داراي ناپيوستگيها و تركهاي سطحي بسيار ريز باشد كه در مراحل ماشينكاري از بين بروند.
آزمايش پرتو نگاري و تفسير فيلم Radiographic Testing and Film Interpretation
تابش الكترومغناطيسي با طول موجهاي بسيار كوتاه، يعني پرتو ايكس يا پرتو گاما از درون مواد جامد عبور ميكند اما بخشي از آن، توسط محيط جذب ميشود. مقدار جذب پرتو در هنگام عبور از ماده به چگالي و ضخامت ماده و همچنين ويژگيهاي تابش بستگي دارد. تابش عبوري از درون ماده ميتواند به وسيله يك فيلم يا كاغذ حساس آشكار شده و روي صفحه فلورسنت مشاهده شود، يا اين كه توسط دستگاههاي حساس الكترونيكي نشان داده شود. اگر بخواهيم دقيقتر بگوييم، عبارت پرتو نگاري به معني فرايندي است كه در نتيجه آن ، تصويري روي فيلم ايجاد شود، بررسي اين فيلم را تفسير ميگوييم.
بعد از اين كه فيلم عكس گرفته شده پرتو نگاري ظاهر شد، تصويري سايه روشن با چگالي متفاوت مشاهده ميشود. قسمتهايي از فيلم كه بيشترين مقدار تابش را دريافت كردهاند، سياهتر ديده ميشوند. همچنانكه پيشتر گفته شد، مقدار تابش جذب شده توسط ماده، تابعي از چگالي و ضخامت آن خواهد بود. همچنين وجود عيوب خاص، مانند حفرهها و تخلخل درون ماده، بر مقدار تابش جذب شده تاثير خواهد گذاشت. بنابراين پرتو نگاري ميتواند براي آشكار سازي انواع خاصي از عيوب در بازرسي مواد و قطعات به كار رود.
استفاده از پرتو نگاري و فرآيندههاي مربوط به آن بايد به شدت كنترل شود، زيرا قرار گرفتن انسان در معرض پرتو ميتواند منجر به آسيب بافت بدن شود.
آزمايش فراصوتي (Ultrasonic Testing)
در اين روش، امواج صوتي با بسامد 5/0 تا 20 مگاهرتز به درون قطعه فرستاده ميشود. اين موج پس از برخورد به سطح مقابل قطعه باز تابيده ميشود. با توجه به زمان رفت و برگشت اين موج، ميتوان ضخامت قطعه را تعيين كرد. حال اگر يك عيب در مسير رفت و برگشت موج باشد، از اين محل هم موجي بازتابيده خواهد شد كه اختلاف زماني نسبت به مرحله اول، محل عيب را مشخص ميكند.
روشهاي فراصوتي به طور گستردهاي براي آشكارسازي عيوب داخلي مواد به كار ميروند ولي ميتوان از آنها براي آشكارسازي تركهاي كوچك سطحي نيز استفاده كرد.
بازرسي با ذرات مغناطيسي (Magnetic Particle Testing)
بازرسي با ذرات مغناطيسي، روش حساسي براي رديابي عيوب سطحي و برخي نقصهاي زير سطحي قطعات فرو مغناطيسي است. پارامترهاي اساسي فرآيند به مفاهيم نسبتاً سادهاي بستگي دارد. هنگامي كه يك قطعه فرومغناطيسي، مغناطيس ميشود، ناپيوستگي مغناطيسي كه تقريباً در راستاي عمود بر جهت ميدان مغناطيسي واقع است، موجب ايجاد يك ميدان نشتي قوي ميشود. اين ميدان نشتي در رو و بالاي سطح قطعه مغناطيس شده حضور داشته و ميتواند آشكارا توسط ذرات ريز مغناطيسي ديدپذير شود. پاشيدن ذرات خشك يا ذرات مرطوب با يك مايع محلول بر روي سطح قطعه، موجب تجمع ذرات مغناطيسي روي خط گسل خواهد شد. بنابراين پل مغناطيسي تشكيل شده، موقعيت، اندازه و شكل ناپيوستگي را نشان ميدهد.
يك قطعه را ميتوان با به كاربردن آهنرباهاي دائم، آهنرباهاي الكتريكي و يا عبور يك جريان قوي از درون يا برون قطعه، مغناطيس كرد. با توجه به اين كه با روش آخر ميتوان ميدانهاي مغناطيسي با شدت زياد در داخل قطعه ايجاد كرد، اين روش به صورت گستردهاي در كنترل كيفي محصول به كار ميرود زيرا اين روش حساسيت خوبي براي شناسايي عيوب قطعات و آشكارسازي آنها عرضه ميدارد
بازرسي با مايعات نافذ ( Liquid Penetrant Testing)بازرسي با مايعات نافذ يكي از روشهايي است كه ميتواند براي عيب يابي تعداد وسيعي از قطعات مورد استفاده قرار گيرد، به شرطي كه عيبها به صورت ترك در سطح قطعه ظاهر شوند. اساس روش بر اين است كه مايع نافذ بر اثر جاذبه مويينگي به درون تركهاي سطحي نفوذ كرده و پس از يك مرحله ظهور، هر عيبي كه به شكل ترك يا شكستگي در سطح قطعه وجود دارد، با چشم رويت ميشود. براي بهتر ديده شدن اين تركها، مايع نافذ معمولاً به رنگهاي روشن و قابل ديد بوده و يا به ماده فلورسنت آغشته ميشود. در حالت اول معمولاً براي رنگين نمودن مايع از رنگ قرمز استفاده ميشود كه با نور روز يا نور مصنوعي قابل ديد باشد، ولي در حالت دوم براي ديدن تركها و درزها بايد از نور فرابنفش استفاده شود.
امروزه، بازرسي با مايع نافذ، يكي از مهمترين روشهاي صنعتي است كه براي مشخص نمودن انواع مختلف عيبهاي سطحي مواد و قطعات، مانند تركها، بريدگيها و نواحي مكهاي سطحي، مورد استفاده قرار ميگيرد. اين روش تقريباً براي هر نوع ماده و در هر اندازهاي، چه بزرگ با شكل پيچيده و چه ساده، قابل استفاده است و معمولاً براي بازرسي توليدات ريختگي و كار شده فلزات آهني و غيرآهني، آلياژها، سراميكها، ظروف شيشهاي و مواد پليمر به كار ميرود.
علاقه مندی ها (بوک مارک ها)