صفحه 1 از 2 12 آخرینآخرین
نمایش نتایج: از شماره 1 تا 10 , از مجموع 11

موضوع: فیزیک نور

  1. #1
    مدير باز نشسته
    تاریخ عضویت
    Jan 1970
    محل سکونت
    Tabriz
    نوشته ها
    5,550
    تشکر تشکر کرده 
    7,087
    تشکر تشکر شده 
    8,503
    تشکر شده در
    2,353 پست
    قدرت امتیاز دهی
    1938
    Array

    پیش فرض فیزیک نور

    اصول كلي تابش ليزر:
    وقتي كه الكترون در يكي از مدارهاي مجاز يا حالت پايه قرار داردهيچ انرژي توسط اتم ساتع نمي شود . هر يك از اين مدار هاي مجاز به يك تراز انرژي معين يا حالت انرژي معين مربوط مي شوند. الكترونها و اتم ها با حركت از يك مدار با انرژي بالاتر (دور تر از هسته) به يك مدار با انرژي كمتر ( نزديكتر به هسته ) ، انرژي از دست مي دهند. اين انرژي به صورت يك فوتون با انرژياست.
    در اتمها مدارهاي مجزا و متعددي وجود دارد و بنابر اين انتقالات مختلفي ممكن اسن انجام شود . از اين رو يك اتم انرژي هاي مختلفي را مي تواند گسيل كند . به طور كلي هر اتم تمايل دارد در حالت انرژي هاي پايين تر قرار گيرد از اين رو براي ايجاد طيف اتمي الكترونها را با تحريك كردن به تراز هاي بالاتر ميفرستند. اين عمل در لوله هاي تخليه و به كمك حرارت يا برخورد الكترونهاي ديگر و يا به كمك تابش با طول موجهاي مناسب انجام پذير است. هر طول موجي كه توسط اتم در حال تحريك گسيل شود، ميتواند توسط آن وقتي كه در تراز هاي پايين انرژي قرار دارد جذب شود . البته انرژي فوتون هاي برخورد كننده بايد خيلي نزديك به اختلاف انرژي بين دو تراز انرژي اتم درگير باشد. اين حالت را جذب تشديدي مي گويند.
    اگر اتم در يك تراز پايين تر تحت تابش با فركانس قرار بگيرد ، احتمال بسيار زيادي وجود دارد كه اتم با جذب اين فوتون تحريك شده و به تراز بالاتر برود. اين فرآيند را جذب برانگيخته مي گويند.
    اتم بلافاصله (چند نانو ثانيه) بعد از تحريك شدن به تراز بالاتر انرژي مي رود و با گسيل فوتوني با انرژي به تراز پايين انرژي باز مي گردد . فرآيند گسيل پرتو مي تواند به دو صورت خود به خودي يا تحريكي انجام شود.
    دو نكته در رابطه با گسيل تحريكي وجود دارد :
    1 - فوتوني كه با گسيل برانگيخته توليد مي شود داراي همان انرژي و فركانس فوتون تحريك كننده است
    2 - امواج نوري مربوط به هر دو فوتون هم فازند و داراي پولاريزاسيون مشابه هستند
    به اين معني كه در اتمي كه به صورت برانگيخته مجبور به تابش نوري مي شود ، موجي كه باعث ايجاد فرآيند شده به فوتون اضافه مي شود به طوري كه يكديگر را تقويت مي كنند و دامنه هاي آنها افزايش ميابد . پس ما امكان تقويت نور به وسيله گسيل هاي تحريكي تابش را خواهيم داشت.
    تابش هاي تحريك شده همدوس هستند. يعني همه امواج سازنده چنين تابش هايي هم فاز هستند .
    اين فرايند با گسيل خود به خودي تفاوت اساسي دارد. چون در آنجا اتمها كاملا به صورت اتفاقي كسيل مي كنند به طوري كه رابطه خاص فازي بين امواج وجود ندارد و اينگونه تابش ها غير همدوس هستند.


    دمش:
    فرآيند تحريك ماده ليزريبراي تغيير تراز و آزاد كردن انرژي را دمش مي گويند. عمل دمش از طريق چندين راه امكان پذير است از قبيل : دمش اپتيكي – دمش به كمك تخليه الكتريكي – دمش به كمك آزاد كردن انرژي شيميايي .
    با توجه به ليزر هاي متفاوت و نوع ماده ليزري از روش هاي متفاوت دمش استفاده مي شود. به طو ر مثال در لبزر هاي گازي مانند ليزر CO2 از روش تخليه الكتريكي استفاده مي شود.




    تشديد كننده هاي نوري:
    براي داشتن پرتو خروجي از ليزرها و انرژي بهينه و با توان بالا نياز داريم كه پرتو هاي تحريك كننده جهت تحريك ماده ليزري و افزايش انرژي را تقويت كنيم.
    در بيشتر حالات تقويت كلي توسط قرار دادن آينه هايي با درصد بازتابش بالا در دو انتهاي كاواك ليزر انجام مي شود . پرتوي نوري بيش از حدود 100 بار بين دو اينه رفت و برگشت مي كند و به اين ترتيب طول موثر ماده افزايش مي يابد. آينه ها تشكيل يك كاواك نوري يا تشديد كننده مي دهند و به همراه ماده فعال ليزري يك نوسان كننده مي سازند . آينه ها در اصل مانند يك بازخور نوري از ماده تقويت كننده عمل مي كنند. اساسا گسيل خود به خودي يك تغيير كوچك در فركانس عبوري از ماده ايجاد مي كند و آن را به دليل گسيل برانگيخته تقويت مي كند.
    در برخورد با آينه هاي انتهايي اكثر انرژي به داخل كاواك باز مي گردد . اين نور تقويت شده مجددا با برخورد به آينه ديگر بيشتر تقويت مي شود و اين <رايند مدام تكرار مي شود. اين تغييرات تااين نوسانات به يك حالت پايدار برسند افزايش مي يابد . در اين حالت رشد دامنه امواج داخل كاواك افزايش مي يابد و هر انرژي كه به دليل گسيل برانگيخته ظاهر ميشود به عنوان خروجي ليزر منظور مي گردد.
    تا اينجا فرض بر اين بود پرتوهايي كه بين دو آينه رفت و برگشت مي كنند موازي هستند . ولي در واقع اينطور نيست. به دليل اثرات پراش در لبه آينه ها يك باريكه كاملا موازي نمي تواند با اندازه محدود ابقا شود چون بخشي از تابش از كناره هاي آينه ها پخش مي شود و اين اتلاف ها در اثر پراش را مي توان با استفاده از آينه هاي مقعر و در عمل با آينه هاي با انحناي متفاوت و شكل هاي مختلف، بسته به نوع ليزر ، كاهش داد. به اينگونه سيستم ها كاواك پايدار گفته مي شود.
    برخي از سيستمهاي كاواك پايدار در شكل زير نشان داده شده است.

    kavaks

    كاواكهاي پايدار علاوه بر پايدار نگه داشتن پرتو ويژگي ديگري نيز دارند و آن تنظيم خروجي ليزر است. اين عمل به سادگي و با تغيير فاصله آينه ها و بدين ترتيب با تغيير دادن مقدار تابش در طرف آينه كوچكتر كه خروجي ليزر را مي سازد ممكن خواهد بود.
    ليزر هاي واقعي :
    در قلب هر ليزر ماده فعالي وجود دارد كه باعث ايجاد خروجي ليزر در باريكه اي از طول موجها است.در حقيقت ليزر ها با نام ماده فعال آنها شناخته مي شوند. به طور كلي ماده هاي متفاوتي به عنوان ماده فعال ليزري مورد استفاده قرار مي گيرد. به طور مثال اولين ليزر در سال 1960 با استفاده از كريستال صورتي ياقوت ساخته شد.
    امروزه تعداد و انواع مواد استفاده شده به عنوان ماده فعال ليزري افزايش يافته است به طوري كه انسان احساس مي كند از هر ماده اي ميتواند با استفاده از روش دمش خاص براي ليزر استفاده كند.
    به طور كلي ليزر ها را با توجه به نوع ماده فعال آن ها به چهار دسته اصلي تقسيم مي كنند:

    1 - ليزر هاي آلائيده شده با عايق
    2 - ليزر هاي نيمه هادي
    3 - ليزر هاي گازي
    4 - ليزر هاي رنگ

    در اينجا به برسي ليزر هاي گازي مي پردازيم.

    ليزر هاي گازي:

    ليزر هايي را كه ماده فعال آنها گاز است ، ليزر هاي گازي مي گويند . ليزر هاي گازي معمولا حجيم هستند و و هر چه پر قدرت تر باشند ، اندازه آنها بزرگتر خواهد بود.
    نكته مفيد در رابطه با ليزر هاي گازي اين است كه از آنجا كه گازها بسيار يكنواخت تر و همگن تر از جامدات هستند، مي توان براي پر كردن و خنك نمودن آنها از يك مدار بسته استفاده كرد.
    از آنجا كه اتمها خطوط جذبي بسيار باريكي در گازها دارند ، تقريبا تقريبا غير ممكن است بتوان به كمك دمش نوري در آنها انرژي آزاد كرد. بنابر اين در ليزر هاي گازي از روش دمش تخليه الكتريكي استفاده مي شود.
    ليزر هاي گازي خود به سه دسته تقسيم مي شوند:
    1- ليزر هاي اتمي
    2- ليزر هاي يوني
    3- ليزر هاي مولكولي

    با توجه به به نوع ليزر ، گزار ليزري بين دو تراز انرژي اتم و يو ن يا مولكول به وقوع مي پيوندد.
    يكي از مهمترين انواع ليزر هاي گازي، ليزر مولكولي CO2 است .

    ليزر CO2 (دي اكسيد كربن ) :

    ليزر CO2 از مهمترين ليزر ها در نوع خود است و از نظر كاربرد فني آن را در زمره مهمترين ليزر ها دسته بندي مي كنند. اين ليزر با كارايي بالا (30%) و توان خروجي زياد و پيوسته حدود چندين كيلو ولت ساخته مي شود .
    ليزر هاي دي اكسيد كربن كاربرد هاي زيادي در زمينه هاي مختلف از جمله جوشكاري ، برش استيل ، الگوبري ، جوش هسته اي و كاربردهاي متنوع نظامي دارند.

    عملكرد ليزر هاي CO2 در توليد پرتو :

    تحريك مولكول هاي CO2 در دو مرحله انجام مي گيرد. در ليزر هاي CO2 از گاز نيتروژن به عنوان گاز كمكي به منظور تحريك استفاده مي شود. بعضي تراز هاي نيتروژن كه كاملا نزديك به ترازهاي CO2 هستند به راحتي در تخليه الكتريكي دمش مي شوند . وقتي نيتروژن تحريك شده به اتمهاي CO2 كه در حالت پايه قرار دارند برخورد كند ، ممكن است انرژي خود را به انها بدهد و آنها را تحريك كند و به تراز تحريكي مورد نظر CO2 بفرستد. ترازهاي نيتروژن و CO2 دقيقا بر روي هم منطبق نيستند ولي اختلاف آنها خيلي كم است .اين اختلاف با انرژي جنبشي اتمها در تبادل انرژي تقريبا جبران مي شود. اتمهاي CO2 تحريك شده با بازگشت به تراز خود انرژي آزاد كرده و يك فوتون ايجاد ميككند كه اين فوتون داراي طول موجي بين 9.2 تا 10.8 ميكرون است و قوي ترين طول موج آن طول موج 10.6 ميكرون مي باشد.
    فوتون آزاد شده با توجه به جهت ميدان الكتريكي كه از آنود به كاتود است به طرف آينه حركت مي كند و با برخورد به آينه اي كه در سمت آنود قرار دارد منعكس شده با برخورد مجدد به مولكول هاي CO2 آنها را تحريك كرده و يك فوتون ديگر آزاد مي كند .
    اين دو فوتون با برخورد مجدد به آينه ها و بازتابش خود فوتونهاي بيشتري ازاد مي كنند و اين عمل تا آنجا ادامه مي يابد كه روند توليد فوتون به يك مقدار پايدار برسد كه در آن موقع خروجي بهينه ليزر آغاز مي شود . لازم به ذكر است كه قبل از رسيدن به حد آستانه نيز از ليزر پرتو هايي خارج مي شود كه به دليل ضعيف بودن قرت چنداني ندارد و ناكارامد است.

    دمش به روش تخليه الكتريكي :

    همان طور كه بحث شد تحريك در ليزر هاي CO2 طي دو مرحله است كه ابتدا تحريك نيتروژن انجام مي شود.
    در ليزر هاي CO2 تحريك به كمك تخليه الكتريكي با ولتاژ هاي بالا انجام مي شود. كاواك ليزر داراي كاتد و آندي از جنس آلومينيوم است . با اعمال ولتاژ بالا در قسمت كاتد ، الكترون هاي مربوط به لايه سطحي آلومينيوم و يا الكترونهاي مربوط به اكسيد روي سطح كاتد جدا شده و در جهت ميدان الكتريكي به سمت آند حركت مي كنند و در مسير خود به اتم هاي نيتروژن برخورد كرده و آنها را تحريك مي كنند و به تراز هاي بالاتر انرژي مي فرستند. اتمهاي نيتروژن نيز در بازگشت به تراز هاي قبلي خود انرژي خود را به مولكول هاي CO2 منتقل مي كنند و ان ها را تحريك مي نمايند و به همين روند پرتو ها تقويت شده تا خروجي ليزر آغاز گردد.


    انواع ليزر هاي CO2 :

    1 - ليزر با لوله بسته
    2 - ليزر با جريان گاز
    3 - ليزر هاي با تخليه عرضي در فشار اتمسفر ( TEA )

    1 - ليزر با لوله بسته

    در اين گونه ليزر ها گاز CO2 و نيتروژن در لوله هاي تخله قرار دارند. مشكلي كه براي اين ليزر ها وجود دارد اين است كهدر جريان تخليه الكتريكي مولوكول هاي CO2 به CO تبديل مي شوند . اين واكنش خيلي سريع است و اگر تمهيداتي به كار گرفته نشود ، عمل ليزر پس از چند دقيقه متوقف مي شود.
    يكي از راهها اين است كه هيدروژن يا بخار آب به مخلوط گاز اضافه كنيم تا با تركيب مجدد CO را به CO2 تبديل كند.
    سرد كردن گاز در اين گونه ليزر ها از ديگر مشكلاتي است كه مي تواند توان ليزر را به 100 وات محدود كند .طرح هاي لوله بسته خيلي مرسوم نيستند ولي در طرح حاي موجبر ب كار برده مي شوند . در موجبر ها ابعاد داخلي لوله كوچك (در حد ميليمتر ) است و موجبر دي الكتريك را به وجود مي آورد . كيفيت پرتوي عالي و خروجي نسبتا زياد با توجه به قطر هاي كوچك لوله بدست مي آيد .
    تحريك به كمك ميدان الكتريكي قوي يا ميدان RF كه به داخل ماده موجبر هدايت مي شود انجام مي گيرد.
    loole20baste
    ليزر با لوله بسته
    mojbar
    ليزر موجبر



    2 - ليزر هاي با جريان گاز:

    دو مشكل تجزيه CO2 و سرد كردن گاز را مي توان با حركت دادن گاز در سر تا سر لوله برطرف كرد .در طرح هاي ساده جريان گاز و تخليه الكتريكي هر دو در سر تا سر لوله ليزر انجام مي شود. اگر اقدامي براي تبديل گاز انجام نشود ، گاز بايد به طور مداوم به بيرون جريان يابد. ولي از آنجا كه فشار گاز پايين است مقدار گاز مصرفي زياد نخواهد بود. توان خروجي ين ليزر ها به طور خطي با افزايش طول لوله افزايش مي يابد . حدود 60 وات به ازاي هر متر . ولي براي توان هاي بيشتر از چند كليو ولت به طول هاي بزرگ نياز داريم .
    ljaryan20gaz


    افزايش ماكزيمم توان خروجي ، با جريان عرضي و سريع ممكن خواهد بود .تخليه الكتريكي را نيز مي توان هم جهت با جريان گاز انجام داد . اين طرح امكان توان تا حدود ده ها كيلو ولت و به صورت مداوم را ممكن مي سازد . خروجي هاي بيشتر نيز امكان پذير است اما ابعاد بزرگ ليزر و منابع تغذيه مورد نياز ، كاربرد آِن را در صنعت با مشكل رو برو مي كند.


    3 - ليزر هاي با تخليه عرضي در فشار اتمسفر ( TEA ):

    تا كنون براي افزايش توان خروجب ليزر CO2 طول تيوپ و سرعت جريان گاز را افزايش داديم . اما يك راه ديگر براي افزايش توان ليزر افزايش فشار است .
    متاسفانه با افزايش فشار به ولتاژ هاي بزرگي براي تخليه الكتريكي و تحريك دي اكسيد كربن نياز است و تجهيزات مورد نياز عظيم مي باشد . لذا در اين روش تخليه در لوله هاي به طول چند متر مشكل خواهد بود . از طرفي تخليه الكتريكي عرضي براي حدود 10 ميليمتر يا اين حدود قابل قبول تر است . عمل ليزر به طور مداوم به دليل عدم پايداري تخليه در فشار هاي بالاتر از 100 ميليمتر جيوه مشكلاتي به همراه خواهد داشت .بنابر اين ليزر هاي با فشار گار بالا بايد به صورت ضرباني كار كنند و به صورت عرضي تخليه شوند .چنين ليزر هايي با تخليه عرضي در فشار اتمسفر ، (TEA) ناميده مي شوند . گرچه فشار گاز ممكن است متغير و حدود چند اتمسفر باشد ،اما توسط اين ليزر ها مي توان ضربان هايي با توان بالا و دوره هاي حدود 50 نانو ثانيه و با انرژي 100 ژول به دست آورد .
    در فشار هاي خيلي بالا و حدود 10 اتمسفر ، بخورد هاي مولكولي باعث پهن كردن خطوط طيف ليزر شده و تنظيم ليزر را روي طول موج هاي مختلف مقدور مي سازد.
    TEA20LASER


    93365739541900062743
    profilephpid100002248043280

    22771097565880345367
    facebook

    23759482593804762228
    NewGame7191

  2. #2
    مدير باز نشسته
    تاریخ عضویت
    Jan 1970
    محل سکونت
    Tabriz
    نوشته ها
    5,550
    تشکر تشکر کرده 
    7,087
    تشکر تشکر شده 
    8,503
    تشکر شده در
    2,353 پست
    قدرت امتیاز دهی
    1938
    Array

    پیش فرض


    تئوري ساخت ليزر CO2 :

    اكنون پس از توضيحاتي كه در مورد ليزر ها و انواع آنها داده شد ، به بررسي ساخت يك نمونه از ليزر دي اكسيد كربن با جريان گاز مي پردازيم .

    اجزاي سازنده ليزر CO2 با جريان گاز :

    تيوپ ليزر
    آينه هاي ليزر
    منبع گاز CO2 و N2 و He
    پمپ خلا
    منبع ولتاژ بالا
    آند و كاتد
    سيستم خنك كننده
    پيچ ها و پايه هاي تنظيم

    در ادامه به برسي هريك از اجزاي ليزر به طور مجزا مي پردازيم و با ارائه آمار و ارقام و روش هاي پيشنهادي ، تئوري كاملي از ساخت ليزر CO2 با جريان گاز ارائه خواهيم داد .


    co21asm


    نقشه هاي ليزر با جريان گاز :
    CO2laser
    نقشه سه بعدي ليزر

    سيستم خلا و گازهاي ليزر :
    همان طور كه در طرح ساخت بيان شد ، از سيستم جريان گاز با تخلي الكتريكي ولتاژ بالا استفاده مي شود. در ادامه نكات مهمي در مورد راه اندازي سيتم خلا و جريان گاز بيان مي شود

    - تمام هواي داخل لوله بايد تخليه شود . تخليه بايد تقريبا به طور كامل انجام شود چرا كه وجود هواي پس ماند در لوله باعث ضعيف شدن پرتوي خروجي يا عدم خروجي ليزر مي شود.
    - هر گونه آلودگي را از روي تيوپ ليزر پاك كنيد چرا كه ممكن است باعث اختلال در پرتوي خروجي شود . توجه شود كه برخي از مواد خلا مانند گريش و مواد پوشاننده درز ها مشكلي ايجاد نمي كند.
    - فشار گاز ليزر را به صورت تكي يا مخلوط ، چه در ابتداي كار و چه به هنگام عمل ليز كنترل كنيد .

    درصد تركيب گاز ها در ليزر co2 به صورت زير است:

    گاز ها
    حجم (ليتر)
    فشار (بار)
    دي اكسيد كربن
    16% تا 4%
    7930 – 280
    167 - 2400
    نيتروژن
    20% تا 10%
    5664 – 200
    2124 - 75
    هليوم
    به ميزان تعادل
    2124 – 75
    146 - 2100
    با توجه به نقشه ساخت ليزر به صورت زير عمل مي كنيم .
    ابتدا ورودي گاز ليزر را ميبنديم و سپس از طرف ديگر توسط پمپ تخليه كاواك را به طور كامل تخليه مي كنيم . منبع گاز را با توجه با جدول بالا پر ميكنيم و سپس آن را به ورودي كاواك متصل مي كنيم . سپس شير ورودي را باز كرده تا مخلوط گاز وارد كاواك شود به منظور برقرار كردن جريان گاز در طول كاواك بايد خروجي ليزر را به پمپ خلا متصل كنيم تا با مكشي كه ايجاد ميكند ، گاز در طول لوله جريان يابد .
    راه ديگر براي ايجاد جريان گاز اين است كه خروجي كاواك را به يك مخزن خالي گاز با فشار كمتر از مخزن ورودي متصل كنيم . توجه شود كه بايد مسير جريان گاز در طول لوله از آند به كاتد باشد تا تخليه الكتريكي هم مسير با عبور جريان انجام شود . لوله هايي كه مخزن گاز و پمپ خلا را به ليزر متصل مي كنند بايد انعطاف پذير باشند . محل اتصال لوله ها به ليزر بايد كاملا عايق بندي شود تا هيچ گونه نشط به بيرون نداشته باشد و باعث افت فشار نشود .

    vacume20system
    تيوپ ليزر :
    مهمترين قسمت ليزر co2 تيوپ آن مي باشد . تيوپ هاي ليزر را معمولا از جنس لوله تخليه پلاسما يا از جنس شيشه مي سازند . اما كاواك هاي شيشه اي مرسو تر هستند زيرا دست رسي و ساخت آنها آسان تر است .
    بهترين شيشه به منظور ساخت كاوا ليزر ، شيشه پريكس نسوز است كه در مقابل تغيير دما مقاومت بالايي دارد . چرا كه سيستم ليزر با توليد گرماي زيادي همراه است.
    با توجه به طرح ساخت ، طول تيوپ ليزر را 45 سانتي متر و قطر مقطع آن را 2.5 سانتي متر در نظر مي گيريم . جهت اتصال لوله هاي ورودي و خروجي گاز ، دو سوراخ در قسمتهاي ابتدا و انتهاي تيوپ ليزر تعبيه مي كنيم يا اينكه تيوپ را به هنگام ساخت به گونه اي مي سازيم كه قابليت اتصال دو لوله به ابتدا و انتهاي ان وجود داشته باشد. تيوپ ليزر ابتدا در يك لوله شيشه اي بزرگتر كه همان لوله سيستم خنك كننده است قرار مي گيرد و سپس بر رويه پايه هاي نگه دارنه ليزر محكم مي شود.

    kavak20map

    سيستم خنك كننده :
    از انجا كه عمل ليز گرماي زيادي ايجاد مي كند و توان ليزر را تا حد زيادي كاهش مي دهد پس بايد به فكر راهي براي خنك كردن تيوپ ليزر و آينه ها باشيم.
    يك روش خنك كردن سيستم استفاده از جريان گاز مي باشد . و روش ديگر استفاده از سيستم خنك كننده ي گردش آب مي باشد . به اين منظور بايد كاواك را در يك لوله شيشه اي بزرگ قرار دهيم . طرز كار به گونه اي است كه تيوپ ليزر در وسط لوله بزرگتر قرار دارد و آب از اطراف آن جريان مي يابد و آن را خنك مي كند. جهت اجاد جريان اب در سيستم خنك كننده بايد دو سوراخ در لوله شيشه اي بزرگ به منظور اتصال لوله هاي ورودي و خروجي آب تعبيه كنيم . و با اتصال آن از طريق لوله ها به يك پمپ ، آب را از يك مخزن درون لوله شيشه اي به جريان بيندازيم . جهت پمپ آب ميتوان از پمپ آكواريوم يا پمپ كولر هاي آبي استفاده كرد كه اب را از يك منبع به داخل سيستم خنك كننده جريان مي دهند.
    در بستن لوله هاي آب و سيستم خنك كننده به هم سعي شود تا هيچگونه نشط آب به بيرون وجود نداشته باشد.
    طبق طرح طول لوله شيشه اي سيستم خنك كننده 30 سانتي متر و قطر آن 5 سانتي متر مي باشد .

    cooling20system


    آينه ها و نصب آنها در ليزر:
    همانطور كه در قسمت تشديد كننده هاي نوري بيان شد براي افزايش توان ليزر و موازي كردن مسير بازتاب پرتوها در كاواك از آينه هايي با درصد بازتابش بالا استفاده مي شد تا فوتونها بتوانند بين دو آينه بازتاب كننده براي جلوگيري از تلفات به دليل جلوگيري از پراش در لبه هاي آينه ها از سيستمي استفاده مي شود كه در آن يك آينه تخت با در صد بازتابش تقريبا 100% و يك آينه مقعر با در صد بازتابش تقريبا 90%در دو طرف كاواك تعبيه شده باشد. با توجه به در صد بازتابش آينه مقعر با بازتابش 90% مي باشد.
    از آنجا كه خروجي ليزرهاي co2 در محدوده 10.6 ميكرون است از قطعات اپتيكي مثل شيشه و يا كوارتز جهت ساختن آينه هاي ليزر نمي توان استفاده كرد .چون اين مواد در محدوده 10.6 جذب زيادي دارند بنابراين خروجي ليزر را به شدت كاهش مي دهند و در اثر گرماي زيادي كه در اثر فرايند جذب در آنها ايجاد مي شود ممكن است بشكنند يا ذوب شوند. بنابراين براي ساختن آينه هاي ليزر از موادي مانند ژرمانيوم – گاليوم - آرسنايد- سولفيد روي- طلا و هالوژن ها مي توان استفاده كرد. در ميان اين آينه ها هالوژنها كمترين جذب را دارند ولي جذب رطوبت و نرم بودن آنها مشكلاتي را فراهم مي كند. آينه هاي فلزي با در صد بازتاب 100% نيز مي توانند براي استفاده در اين طول موجها مورد استفاده قرار گيرند.
    ما در ساخت ليزر co2 با جريان گاز از آينه ژرمانيوم و طلا استفاده مي كنيم. به اين صورت كه آينه تخت را از جنس آينه ژرمانيوم و آينه مقعر را از جنس آينه طلا انتخاب مي كنيم.

    germanium20mirror gold20mirror

    تقريبا بيشترين هزينه در ساخت ليزر co2 مربوط به تهيه آينه هاست.
    لازم به تذكر است كه آينه مقعر طلا كه مورد استفاده قرار مي گيرد داراي شعاع انحناي cm 120 بايد باشد در ضمن خروجي ليزر هم از همين آينه هاست.
    نكته ديگري كه بايد هنگام تهيه آينه ها در نظر گرفت اين است كه آينه ها بايد از طرف جلوي آينه پوشش داده شده باشند يعني پوشش طلا يا ژرمانيوم بايد بر روسي سطح ِنه باشد نه پشت آينه.
    در صورتي كه در تهيه آينه طلا با مشكل مواجه شديم مي توانيم از آينه آلومينيوم نيز استفاده كرد.
    گاهي اوقات نيز در ساخت آينه ها سطح آينه را با استفاده از چند ماده مختلف با در صد بازتابش بالا در طول موجهاي متفاوت استفاده مي شود. ولي ضخامت پوش هر ماده بر روسي سطح آينه برابر با نصف طول موج نوري است كه آينه براي آن طراحي شده است.
    در انتخاب آينه مقعر بايد توجه كرد كه شعاع انحناي آن بايد بزرگتر از طول كاواك ليزر باشد. در ادامه جدولي از آينه ها و اطلاعات مربوط به آن ارائه شده است.

    نصب آينه ها و پيچهاي تنظيم:
    نصب آينه ها به صورت ثابت ولي حركت در دو انتهاي كاواك ممكن است مشكلاتي از قبيل عدم موازي بودن پرتوها و يا ضعيف شدن توان خروجي ليزر براي ما ايجاد كند.
    بنابر اين بهترين كار اين است كه آينه ها را بر روي پايه هاي متحرك با پيچ تنظيم نصب كنيم تا بتوانيم ان را به راحتي حركت داده و تنظيم كنيم. از انجا كه تهيه يك تنظيم كننده ايدهآل كه با سيستم خلا كاواك ليزر سازگار باشد بسيار هزينه بر است پس يك راهكار پيشنهادي ارائه مي كنيم.
    مطابق شكل ارائه شده با دوقطعه فلز در ابتدا ، نگهدارنده اي براي آينه ها مي سازيم و براي تعبيه پيچ هاي تنظيم دو سوراخ در آنها ايجاد مي كنيم .براي اتصال اينه ها به كاواك خلا ، به ورقه اي از جنس آلومينيوم انعطاف پذير نياز داريم . فويل الومينيوم را به صورت زيگ زاگ مطابق شكل به صورت استوانه اي كه قطر سطح مقطع ان برابر با قطر كاواك است شكل مي دهيم و لبه هاي آن را توسط چسب قابل انعطافي مانند چسب آكواريوم به هم مي چسبانيم . سپس يك انتهاي استوانه انعطاف پذير ساختگي خود را به آينه مي چسبانيم و طرف ديگر آن را به كاواك ليزر . با قرار دادن پيچ هاي تنظيم مطابق شكل پس از چك كردن عدم نشط گاز به بيرون با روشن كردن ليزر ، آينه ها را تنظيم مي كنيم . لازم به ذكر است كه اين سيستم بايد براي هر دو آينه تخت و مقعر به كار برده شود .
    mirror20curve
    mirror20flat
    تنظيم پرتوي خروجي:

    جهت استفاده از پرتوي ليزر بايد قادر باشيم آن را در جهات مختلف هدايت كنيم.
    قبل از هر چيزي بايد از موازي بودن پرتو هاي خروجي اطمينان حاصل كنيم. براي اين منظور كاغذي را از وسط سوراخ كرده به گونه اي در جلوي كاواك ليزر قرار مي دهيم كه محور مركزي گذرنده از كاواك هم راستا با سوراخ باشد. سپس با دستكاري پيچ هاي تنظيم آينه ها پرتوي خروجي از ليزر را به گونه اي تنظيم مي كنيم تا از مركز سوراخ عبور كند . اكنون ما يك دسته پرتوي مستقيم داريم . از قبل لازم به ذكر است كه به دليل نوع اينه هاي استفاده شده و سيتم بازتابش رفت و برگشت فوتون بين دو آينه پرتوي خروجي يك پرتوي موازي است.اكنون مي خواهيم پرتو را با قطر هاي متفاوت بر روي نقطه مورد نظر متمركز كنيم. جهت اين كار مي توان از سيستم عدسي هاي مركب استفاده كرد . چند نمونه از سيتم هاي عدسي مركب به منظور هدايت پرتو در شكل نشان داده شده كه باتوجه به انها مي توانيم با استفاده از عدسي هاي گوناگون با فاصله كانوني ها وشعاع هاي انحناي مختلف پرتوي خروجي را به گونه اي كه تمايل داريم هدايت كنيم .

    assemblies collimationPU1
    assemblies collimationPU3

    نكته ي ديگر در تنظيم پرتوي خروجي استفاده از پهن كننده پرتو است . پهن كننده ها شعاع پرتو هاي نوري را افزايش داده و ما ميتوانيم با عبور دسته پرتوي گسترده تر از عدسي ، سطح كانوني كوچك تري بدست آوريم و پرتو را بيشتر متمركز كنيم .
    hedayat20parto

    راه ديگري كه در انتقال پرتو ها مفيد است استفاده از تارهاي نوري موج بر است كه مي توانند با قابليت انعطاف پذيري خود ، پرتو را به نقاط مختلف انتقال دهند.
    اصولا اين تارهاي نوري داراي قطرهاي كوچك ، از جنس شيشه يا كوارتز هستند و داراي يك هسته مركزي با ضريب شكست بزرگتر از محيط اطراف خود مي باشند.پرتو نور قادر به حركت در داخل هسته مركزي به صورت زيگ زاگ به دليل بازتاب كلي از فصل مشترك هسته مركزي با جداره مي باشد.
    متاسفانه اين روش براي طول موجهاي تا 1.6 ميكرون به كار مي رود . چون ميزان جذب براي طول موج هاي بزرگتر زياد است ، از اين روش براي انتقال پرتو در ليزر co2 نمي توان استفاده كرد .
    fibre20noori

    ولتاژها:
    همان طور كه قبلا نيز بيان شد ، دمش در ليزر هاي گازي از نوع تخليه الكتريكي است كه توسط ولتاژ هاي بالا انجام مي شود .از آنجا كه دمش در ليزر هاي co2 طي دو مرحله انجام مي شود ، بنابر اين ابتدا بايد توسط تخليه الكتريكي ولتاژ بالا اتم هاي نيتروژن را تحريك كنيم تا به حالت برانگيخته برسند و با انتقال انرژي خود به مولكول هاي co2 عمل ليز آغاز شود .
    اوين حالت تحريكي ازت تقريبا در 0.3 الكترون ولت است . بنا بر تجربه براي شروع عمل ليز به 2 الكترون ولت انرژي نياز دارد .
    لازم به ذكر است كه ليزر هاي co2 با جريانDC يا جريان متناوب AC با فركانس خيلي پايين كار مي كند. البته جريان هاي AC در ليزر هايي استفاده مي شود كه به صورت ضرباني دمش مي شوند و خروجي ناپيوسته دارند .
    در مورد ليزر هاي co2 ولتاژي را برابر با 10 تا 15 كيلو ولت DC به ازاي هر متر تخليه الكتريكي استفاده مي كنيم . كه حدود جريان الكتريكي ما بين 10 تا 15 ميلي آمپر است .
    براي ايجاد جريان DC مي توانيم از يكسو كننده هاي جريان AC استفاده كنيم تا به ولتاژ آغازين 10 كيلو ولت برسيم .
    در ليزر هاي co2 نياز نداريم كه از سيستم هاي ولتاژ بالا با قابليت تنظيم استفاده كنيم . اما استفاده كردن از چنين سيستمي كه قابليت تنظيم ولتاژ خروجي را داشته باشد براي تنظيم قدرت خروجي ليزر مناسب ست.چرا كه هر چه ولتاژ بالاتري به كار ببريم ، عمل ليز با قدرت بيشتري انجام مي شود.
    ولتاژ بالاي اعمال شده به دو سر تيوپ ليزر اعمال مي شود ، يك ميدان يكنواخت در سر تا سر لوله ايجاد ميكند و الكترونها در اين ميدان شتاب مي گيرند و با برخورد به ديگر اتم ها آنها را تحريك مي كنند.
    گاهي اوقات قبل از عمل تخلي گاز را كمي يونيزه مي كنند . اين عمل به كمك يك پالس ولتاژ بالا كه به يكي از الكترود ها اعمال مي شود يا به كمك ي سيم كوتاه كه به دور لوله پيچيده شده ، انجام مي گيرد . در اين روش هم الكترون ها و هم يون ها و هم مولكول هاي خنثي در محيط وجود دارند . الكترونهايآزاد توسط ميدان الكتريكي شتاب گرفته و به سمت آنود حركت مي كنند.
    نكته اي كه به هنگام تنظيم ولتاژ مناسب در نظر مي گيريم اين است كه ولتاژ اعمال شده را از مرز 15 كيلو ولت آغاز ميكنيم . ولتاژ را اندك اندك افزايش ميدهيم تا يك باريكه نوري موازي و درخشان در مركز كاواك ليزر مشاهده شود . در چنين حالتي ولتاژ اعمال شده ولتاژ مناسبي است.
    لازم به ذكر است كه استفاده از ولتاژ هاي بالا به مراقبت بسيار زيادي نياز دارد .
    از سيم هاي رابط عايق استفاده كنيد و هر جا كه سيم پوشش خود را از دست مي دهد آان را عايق كنيد . سيستم ولتاژ بالا و خود دستگاه ليزر بايد بر روي پايه هاي محكم و بدون لغزش نصب شده باشد تا از هر گونه لغزش و خطر احتمالي برخورد سيم ها جلو گيري شود.
    به هنگام كار كردن با چنين سيستمي بسيار دقت كنيد تا سيمهاي كاتد و انود 2 اينچ به ازاي هر 10 كيلو ولت از هم فاصله داشته باشند. تا از هر گونه جرقه زدن و اتصال كوتا اجتناب شود.

    الكترود ها :
    يكي از مهمترين اجزاي يك ليزر الكترود هاي آن مي باشد. همان طور كه قبلا نيز اشاره شد ، الكترود ها با آزاد كردن الكترون هاب اوليه نقش مهمي در شروع عمل ليز ، ايفا مي كنند . در ليزر هاي مختلف ، انواع متعددي از الكترودها استفاده مي شود. در ليزر هاي co2 به طور معمول از الكترود هايي از جنس آلو مينيوم استفاده مي شود. چراكه آلومينيوم داراي الكتونهاي ظرفيت مناسب جهت ازاد شدن توسط ولتاژ بالا مي باشد . همچنين از انجا كه سطح الومينيوم هميشه پوشيده از يك لايه اكسيد آلومينيوم است اين امر به ازاد كردن الكترون هاي بيشتري كمك مي كند. در طرح ليزر از ورقه هاي نازك و انعطاف پذير آلومينيوم براي ساخت كاتد و آنود استفاده مي كنيم . روش كار به اين صورت است كه درو قطعه ورقه الومينيوم با عرض 3 و طول 15 سانتي متر تهيه مي كنيم . سپس اين ورقه ها را به شكل استوانه هايي هم قطر با تيوپ ليزر يعني به قطر 2.5 سانتي متر لوله مي كنيم و در دو انتهاي تيوپ ليزر فرو ميكنيم . سپس يك سانتي متر از هر طرف را از لوله خارج كرده و بر روي خود تيوپ خم مي كنيم . پس از اتصال سيم هاي رابط جريان به ورقه هاي آلومينيوم ، آن قسمت از تيوپ را كه ورقه هاي آلومينيوم بر روي آن تا خورده به شدت عايق بندي مي كنيم تا از هرگونه تماس با آن ها غير ممكن شود .
    لازم به ذكر است ، سيتم آينه ها و پيچ هاي تنظيم كه قبلا توضيح داده شد بايد پس از عايق بندي الكترود ها و لوله كاواك به انتهاي ليزر متصل شود. چراكه اگر بدون عايق بندي عمل شود ، خطر برق گرفتگي وجود دارد.

    محاسبه تقريبي توان ليزر :

    ليزر هاي گونتگون با نوجه به سيستمي كه در ساخت آنها به كار برده شده از قبيل : نوع ماده ليزي ، طول كاواك ليزر ، روش هاي گوناگون دمش و نوع سيستم خنك كننده داراي توان هاي خروجي متفاوتي هستند.
    براي محاسبه توان خروجي ليزر روش هاي گوناگوني وجود دارد كه بسياري از آنها حاوي فرمول هاي سخت و پيچيده است و نياز مند اطلاعات دقيقي از قسمت هاي مختلف دستگاه مي باشد .
    در اينجا يك راه پيشنهادي و ساده جهت محاسبه توان تقريبي ليزر ارائه مي شود كه مي تواند مفيد باشد .
    جهت محاسبه توان خروجي، پرتوي ليزر را به يك مايع كه ظرفيت گرمايي آن براي ما مشخص است مي تابانيم و در مدت زمان تابش ، تغييرات دمايي را اندازه مي گيريم . با محاسبه انرژي گرمايي مي توان توان خروجي ليزر را از رابطه معروف p=w/t بدست آورد . يكي از مناسب ترين مايعاتي كه مي توان از آن استفاده كرد آب مي باشد . چرا كه ظرفيت گرمايي آن مشخص است و به راحتي در دسترس مي باشد . اما براي محاسبه توان دقيق بايد ضريب بازتابش سطح آب را نيز به هنگام محاسبات در نظر بگيريم .چرا كه مقداري از پرتوي تابيده شده به سطح آب ، توسط سطح بازتابيده مي شود . استفاده از مايعاتي با ظريب بازتابش كمتر ، محاسبات را دقيقتر مي كند.

    تلفات ليزر :

    راه هاي متفاوتي براي اتلاف در ليزر وجود دارد كه به كاهش توان خروجي ليزر منجر مي شود . در زير به برخي از آنها اشاره مي شود كه تلاش براي رفع هر كدام از موارد ذكر شده باعث افزايش توان خروجي ليزر است .
    - جذب و پراكنده كردن نور توسط آينه ها .
    - پراش از لبه آينه ها .
    - عبور نور از آينه ها قبل از رسيدن به حد آستانه تابش .
    - پخش و پراكندگي پرتوها توسط ماده ليزري به دليل عدم يك نواختي ماده از نظر اپتيكي .
    - جذب ماده ليزري و گسيل تابش هايي كه مورد نظر ما نيست.
    - كاهش توان خروجي به دليل گرماي حاصله از عمل ليز كه ميتواند باعت بالا رفتن دماي آينه ها ، كاواك ليزر و يا الكترود ها شود .
    - كاهش توان خروجي به دليل عدم وجود خلا كامل در كاواك قبل از جريان دادن گاز درون كاواك.
    تعدادي از عوامل اتلاف ذكر شده از جمله تلفات ناشي از گرم شدن سيستم و يا پراش از لبه هاي آينه ها قابل رفع است كه قبلا در مورد آنها توضيح داده شد . تعدادي ديگر از عوامل نيز با استفاده از مواد مناسب در ساخت ليزر قابل رفع است .
    به طور كلي هر جه بيشتر بتوانيم در رفع عوامل بالا تلاش كنيم ، توان خروجي بيشتري خواهيم داشت .

    ايمني ليزر :

    بيشتر ليزر ها تابشي گسيل مي كنند كه با احتمال خطر همراه است . درجه خطرناكي ليزر به مشخصات خروجي ليزر ، طريقه استفاده و تجربه فردي كه از آن استفاده مي كند بستگي دارد .
    از مشخصه هاي تابش ليزر جمع شوندگي پرتوي آن است . اين امر به همراه انرژي بالاي ليزر مي تواند انرژي زيادي به بافت هاي فيزيو لوژيكي بدن منتقل كند.از آنجا كه پرتو هاي ليزر داراي طول موج هاي متفائتي هستند ، مي توانند به بافت هاي مختلف بدن با توجه به قابليت جذب آنها آسيب برسانند . جذب تابش باعث افزايش دما مي شود و به قطع شدن اتصالات مولكولي مي انجامد .
    يكي از آسيب پذير ترين قسمت هاي بدن تا آنجا كه به تابش ليزر مربوط مي شود ، چشم انسان است . اين امر به اين دليل است كه عدسي چشم ، پرتوي تابيده شده از ليزر را در ناحيه اي به شعاع حدود چندين برابر طول موج ليزر با چگالي بالاي انرژي متمركز مي كند .
    ميزان خسارت به طول موج بستگي دارد به طوري كه تابش در نواحي ماورائ بنفش و مادون قرمز كه توسط قرنيه جذب مي شود ، باعث صدمه ديدن آن مي شود و جذب در ناحيه مريي باعث آسيب ديدن شبكيه مي گردد.
    اين جذب ها توسط چشم مي تواند به سوختگي يا نقص بينايي منجر شود .
    پوست مي تواند بيشتر از چشم مورد تابش قرار گيرد . پوست ممكن است در تابندگي سطح بالا تاول بزند و يا آسيب كمتري ببيند . در مورد پوست هم ميزان خسارت به طول موج تابش و ميزان جذب بستگي دارد به يژه در محدوده پرتوهاي ماورائ بنفش .
    معمولا مكان هايي كه دستگاه هاي ليزر در آن ها قرار دارد ، با چراغ هاي اخطار و متوقف كننده هاي پرتو تجهيز مي شوند . در اين مكان ها از موادي كه بازتاب كننده پرتو هستند نيز استفاده مي گردد . به هنگا كار كردن با لبزر ها بايد از عينك هاي محافظ چشمي استفاده كرد و با توجه به اينكه در ليزر ها معمولا از مولد هاي ولتاژ بالا استفاده مي شود ، رعايت نكات ايمني در اين مورد نيز ضروري مي باشد .


    93365739541900062743
    profilephpid100002248043280

    22771097565880345367
    facebook

    23759482593804762228
    NewGame7191

  3. #3
    مدير باز نشسته
    تاریخ عضویت
    Jan 1970
    محل سکونت
    Tabriz
    نوشته ها
    5,550
    تشکر تشکر کرده 
    7,087
    تشکر تشکر شده 
    8,503
    تشکر شده در
    2,353 پست
    قدرت امتیاز دهی
    1938
    Array

    پیش فرض

    حمله با سرعت نور
    1781 1

    از ديدگاه جنگى، ليزر يك پديده تقريباً فوق العاده بود. در ليزر به جاى دود و بوى بد و صداى گوشخراش مهمات جنگى از پرتوهاى نامرئى نور متمركز استفاده مى شود. جت هاى بازسازى شده بوئينگ ۷۴۷ كه به سلاح هاى ليزرى مجهز است، موشك هاى بالستيكى را شليك مى كند و چندصد مايل دورتر از جايى كه هستيم، به هدف برخورد مى كند. توپ هاى داراى انرژى هدايت شده مى تواند راكت هايى را كه از طرف دشمن شليك مى شود، باسرعت نور ره گيرى كند، مواد انفجارى داخل آنها را داغ كرده و باعث انفجار آنها در وسط آسمان شود. البته مواردى كه ذكر شد، يادى از تصورات ذهنى جنگ ستارگان دوران رياست جمهورى رونالد ريگان نبود. اينها طرح هاى جديدى است كه نقطه آغاز آن فقط به دهه قبل بازمى گردد و در آينده نه چندان دور به حقيقت خواهد پيوست. ليزر تاكتيكى پرانرژى (THEL) نيروى زمينى ايالات متحده در ميدان موشكى وايت سندز ((White Sands واقع در صحراى نيومكزيكو، چندين خمپاره و راكت كاتيوشا را منهدم كرد. در سال ۲۰۰۴ پيمانكاران نيروى هوايى آمريكا، شليك آزمايشى سلاح هاى ليزرى را كه به صورت شيميايى توليد شده بود، آغاز كردند. اين يك ليزر هوابرد بود كه بر روى يك بوئينگ اصلاح شده ۷۴۷ قرار مى گرفت.
    به يك باره به نظر رسيد كه تلاش هاى اخير براى اداره كردن ليزرهاى ميدان نبرد مانند پروژه جنگ ستارگان دهه ۱۹۸۰ از بين رفته است. توليد چندين مگاوات توان ليزرى براى منفجر كردن موشك به چندصد گالن مواد شيميايى سمى ( از قبيل اتيلن و ترى فلوئوريد نيتروژن) نياز داشت. بدين ترتيب حجم سلاح ها افزايش يافت. بدتر آنكه پس از چند شليك بايد گروه تازه اى از مواد واكنش دهنده به اين ليزرها تزريق مى شد. موضوع حمل و نقل اين مواد سمى، چه از طريق هوا و چه در طول ميدان رزم، لرزه بر اندام فرماندهان نظامى انداخت. پرسش هايى نيز در مورد چگونگى نفوذ موثر اين پرتوها در باران و گرد و غبار مطرح شد. سال گذشته نيروى زمينى آمريكا پروژه THEL خود را لغو كرد. بعضى از افراد فكر مى كنند احتمالاً جت ۷۴۷ كه براى شليك كردن پرتوها بازسازى شده به علت هزينه سنگين پروژه بعدى است كه لغو مى شود.
    البته هنوز زود است كه سلاح هاى ليزرى را از دست رفته بدانيم. پتانسيل پرتوى سلاح هايى كه با دقت زياد و تا فاصله دور مى تواند شليك كند، داراى اهميت زيادى از لحاظ نظامى است، به ويژه در زمانى كه سربازان آمريكايى در حال نبرد با دشمنان چريك مانندى هستند كه به سرعت در پس زمينه ميدان محو مى شوند. ژنرال برادلى لات يكى از فرماندهان سپاه تفنگداران دريايى ايالات متحده ((USMC مى گويد: «اگر مى شد براى مدت طولانى شليك كرد، بدون آن كه مجبور به بارگذارى مجدد سلاح باشيم، خيلى خوب بود. اين چيزى است كه ((USMC خيلى به آن علاقه دارد و در حال پيگيرى آن است.»
    اما اگر ليزرهاى شيميايى نتواند آن را برآورده سازد، چه چيزى باعث مى شود كه جنگ پرتوها تحقق يابد؟ پاسخ آن دو چيز است. اول آن كه پنتاگون كم كم اين موضوع را درك مى كند كه اگر نتايج مطلوب را مى خواهد، بايد انتظارات خود را پايين بياورد. به عنوان مثال ابتدا خمپاره و بعد موشك ها را مورد حمله قرار دهد. اما موضوع دوم كه از مورد اول مهم تر است، ظهور مجدد دو فناورى پروژه جنگ ستارگان (ليزرهاى الكترون آزاد و نيمه هادى) در آزمايشگاه هاى پرانرژى و پراميد دو همكار سابق است كه فكر كردند روياهاى آنها درباره پيروزى ليرز، سال ها پيش از بين رفته است.
    جهش به سرعت نور: همه ليزرها كم و بيش به يك روش كار مى كنند. انواع مشخصى از اتم ها را تحريك كنيد تا ذرات نور (فوتون ها) را تشعشع كند. اين نور را به عقب و به اتم هاى تحريك شده برگردانيد تا فوتون هاى بيشترى پديدار شود. برخلاف لامپ هاى حبابى كه نور آن در تمام جهت ها پخش مى شود، اين دسته از فوتون ها فقط در يك جهت منتشر مى شود. نور ليزر به جاى آن كه در همه قسمت هاى طيف فركانسى داراى درخشندگى باشد، داراى طول موج يكسان است كه بستگى به «واسطه مورد استفاده» دارد، يعنى نوع اتم هايى كه از آنها براى توليد پرتو استفاده مى شود. اگر مقدار كافى از نور متمركز را بتابانيم، اجسام شروع به سوختن مى كند.
    در نخستين آزمايش هاى ليزرى كه در دهه ۱۹۶۰ صورت گرفت، از كريستال هاى ياقوت به عنوان واسطه بهره بردارى استفاده مى شد. اما ليزرهاى حالت جامد اصولاً نمى تواند بيش از چندصد وات توان توليد كند. اين مقدار البته براى جراحى چشم خوب است، اما سرنگون كردن موشك (پديده اى كه نيروهاى نظامى خواستار انجام آن هستند) به توانى برابر ميليون ها وات نياز دارد. به همين دليل است كه پژوهشگران، تلاش هاى خود را به سمت ليزرهاى شيميايى معطوف كردند، كه در نهايت با شكست روبه رو شد.
    نوع ديگرى از ليزر وجود دارد كه براى توليد پرتو هيچ احتياجى به كريستال، (واسطه مورد استفاده) و مقادير زيادى از مواد شيميايى خطرناك ندارد. اين ليزر را ليزر الكترون آزاد (FEL) مى نامند. اين ليزر از جريان توربوشارژشده اى از الكترون ها براى شروع واكنش خود استفاده مى كند. اين نوع ليزر در برنامه پدافند موشكى ملى جنگ ستارگان روش غالب بود. اين پديده تقريباً همان پديده افسانه اى بود كه جورج نيل و باب ياماموتو (محققان آمريكايى) به اتفاق هم براى يك شركت پيمانكار نظامى به نام TRW به كار انداختند.
    اين طرح به دليل انتظارات توان بالا نيمه كاره ماند. هم آقاى نيل (پژوهشگر اصلى پروژه) و هم ياماموتو (يكى از مهندسان پروژه) به طرح خود اعتقاد داشتند. آنها فكر مى كردند كه با تحقيق و پژوهش كافى مى توان كارى كرد كه ليزر قادر به متوقف ساختن يك موشك سركش و مهيب باشد. موفقيت مورد نياز در فيزيك اتمى، فيزيك نور (اپتيك) و ابررسانايى، منافع زيادى در برخواهد داشت، حتى اگر هرگز نتوان ICBM (موشك هاى بالستيكى بين قاره اى) را از بين برد. اما پس از ۱۰ سال تلاش و صرف هزينه اى بالغ بر نيم ميليارد دلار، حداكثر توانى كه ليزر الكترون آزاد توليد شده در آزمايشگاه TRW داشت ۱۱ وات بود، يعنى يك دهم آنچه كه يك لامپ معمولى توليد مى كند.

    1781 2

    سرانجام پس از چند سال كه مجريان طرح به كار خود ادامه داده و وعده توليد توان هاى ۱۰ و ۲۰ مگاوات را مى دادند، پنتاگون در سال ۱۹۸۹ پروژه جنگ ستارگان را متوقف كرد. آقاى نيل به ويژه از طرح هاى ناشيانه و بى دقتى كه باعث خرابى اين برنامه شده بود و سبب شد كه ايده هاى او درباره انرژى هدايت شده وسيله استهزا و تمسخر ديگران شود، بسيار خشمگين و ناراحت بود. او تا سال ها پس از آن، در كنفرانس هاى علمى اى كه برگزار مى شد همچنان طرفدار از سرگيرى پژوهش در زمينه الكترون آزاد بود. نيل مى گويد: «مردم فكر مى كردند كه ما ديوانه هستيم و اين فناورى عملى نيست، البته با شواهد موجود نيز حق با آنان بود.»
    در اين حال ياماموتو به مدت ۱۵ سال پس از شكست مفتضحانه جنگ ستارگان، خود را از پروژه هاى نظامى دور نگه داشت. او براى كار به آزمايشگاه ملى لورنس لايورمور (شريك تجارى TRW در زمينه ليزر الكترون آزاد) رفت تا آهن رباهاى مخصوص آزمايش هاى فيزيك انرژى زياد را بسازد. اين آزمايشگاه نزديك شهر بركلى واقع در ايالت كاليفرنيا بود؛ همانجايى كه ياماموتو در آن بزرگ شد و به مدرسه و كالج رفت. بدين ترتيب جابه جايى مذكور اين فرصت را به او داد تا با كمك دوستان قديمى خود به بازسازى خودروهاى وارداتى (مانند تويوتا و داتسون) بپردازد. باب ياماموتو در گاراژ و آزمايشگاه شهرت زيادى در زمينه انجام كارهايى كه به دشوارى صورت مى گرفت، به دست آورد. ياماموتو به دليل همين پشتكار و همچنين تجربه قبلى در زمينه ليزر در سال ۲۰۰۳ توسط وزارت دفاع آمريكا براى اجراى پروژه ۵۰ ميليون دلارى ليزر حالت جامد در لايورمور كه پنتاگون بر روى آن سرمايه گذارى كرده بود، انتخاب شد. اين فناورى كه روزى به نظر مى رسيد غير علمى باشد، با پيشرفتى فراتر از حد انتظار، احيا شد. ياماموتو همان احساس آرامشى را كه در ليزرهاى الكترون آزاد داشت، در مورد فناورى حالت جامد نيز به دست آورد. او مى گويد: «سلاح هايى با انرژى هدايت شده، چيزى است كه محققان بيش از ۳۰ سال است در پى آن بوده اند و من مى خواهم نخستين كسى باشم كه مى گويد ما آن را به دست آورده ايم.»
    سلاح ساخته شده: مهمات موجود در ليزر جديد حالت جامد ياماموتو، مجموعه اى از لوحه هاى شفاف به وسعت ۴ اينچ مربع (حدود ۲۵ سانتى متر مربع) است كه با ارغوانى كمرنگ، رنگ آميزى شده است. اين لوحه ها دقيقاً همان چيزى است كه مى توان انتظار داشت براى راه اندازى توپ هاى مستقر در هواپيماى «اينترپرايز» يا «فالكون ميلنيوم» مورد استفاده قرار مى گيرد. البته خشاب اين لوحه هاى شفاف دقيقاً بى نهايت نيست.
    اين سلاح ها براى هر ۱۰ ثانيه اى كه شليك مى كنند حداقل به يك دقيقه زمان نياز دارند تا خنك شوند. اين لوحه ها از جنس سراميك هستند كه با عنصر نئوديميوم تركيب شده است. هنگامى كه اتم هاى اين عنصر تحريك شود، فوتون هايى توليد مى كند كه نهايتاً به صورت پرتوهاى ليزر درمى آيد. لوحه هاى مذكور هيچ گاه خالى از نيرو نمى شود و دردسر كار با آنها بسيار كمتر از ظروف حجيم مواد شيميايى است. استفاده از اين لوحه ها دليل اصلى اين موضوع است كه ماشين يا ماموتو در آزمايشگاهى به طول ۹ متر جاى مى گيرد. تصور اين واقعيت چندان دشوار نيست كه تمام اين دستگاه در يك كاميون كوچك گنجانده مى شود و خمپاره ها را به آسمان مى فرستد. يك ليزر حالت جامد مانند اين اكنون مى تواند منطقه جنگى كوچكى را تشكيل دهد. منفجر كردن يك ICBM از فاصله ۱۵۰ كيلومترى به چندين مگاوات نور پرانرژى احتياج دارد. ليزرهاى حالت جامد هرگز نمى تواند تا اين حد پرقدرت باشد. اما گرم كردن يك خمپاره از فاصله ۵/۱ كيلومترى تا اندازه اى كه مواد انفجارى داخل آن منفجر شود فقط به توانى معادل ۱۰۰ كيلووات نياز دارد. يا ماموتو ده ها بلوك آلومينيوم و فولاد كربنى را نشان مى دهد. هر يك از اين بلوك ها ۵/۲ سانتى متر ضخامت و ۵ سانتى متر ارتفاع دارد. بر روى تمام آنها علائم سوختگى ديده مى شود. يكى از بلوك ها كه با علامت«۰۵-۶-۶» مشخص شده است تقريباً به طور كامل و به اندازه يك سكه معمولى داراى تورفتگى است. طنابى كه از فلز ذوب شده ساخته شده است به انتهاى بلوك چسبيده است. ياماموتو با صداى زير و با يك لبخند كودكانه مى پرسد: «آيا مى توانيد باور كنيد؟» او خيلى جوان تر از سن واقعى خود (۵۰ سال ) به نظر مى رسد. وى مى گويد: «درست مانند درخشش لامپ و جسم در حال ذوب شدن است، واقعاً خنده دار است.» ليزر موسسه لايورمور كه با لوحه هاى بزرگتر به حركت رو به جلوى خود ادامه داد و سرعت جهش را بيشتر كرد در مارس ۲۰۰۵ موفق شد به توان ۴۵ كيلووات دست يابد. اين مقدار بيش از سه برابر توانى است كه ليزر در سه سال پيش از آن مى توانست توليد كند اما در روزى كه من براى تماشاى آزمايشگاه لايورمور رفتم تنش عصبى آنجا را فرا گرفته بود. هر يك از لوحه ها به وسيله رشته اى شامل ۲۸۸۰ ديود نور افشان (LED) احاطه شده است. هنگامى كه اين ديودها نور از خود ساطع كرده و مى درخشد باعث تحريك اتم هايى در تركيبات سراميكى نيمه شفاف شده و واكنش زنجيره اى ليزر آغاز مى شود. مشكل آن است كه هر چقدر ديودها بيشتر بدرخشد اختلاف حرارتى كه كيفيت پرتو را كاهش مى دهد نيز بيشتر مى شود. پرتو مادون قرمز كه براى چشم غير مسلح قابل ديدن نيست كم كم بخشى از كيفيت خود را از دست مى دهد كه پديده مطلوبى نيست، زيرا پنتاگون مايل است كه پرتو زيبا، سخت و نيرومند داشته باشد. قرار است گروهى از كارشناسان وزارت دفاع براى آزمايش اين پرتوها به اين آزمايشگاه بيايند. حضور آنها تا حد زيادى تعيين مى كند كه آيا گروه متخصصان لايورمور مى تواند بودجه مورد نياز را براى ساخت ليزر آينده خود (كه يك ماشين تسليحاتى با قدرت KW100) دريافت كند يا نه. بنابراين گروه ياماموتو در حال انجام آخرين اصلاحات بر روى «اپتيك تطبيقى» است. آينه هايى با بيش از ۲۰۰ بازوى فعال كننده نصب شده است تا اعوجاج هاى ايجاد شده در پرتو را برطرف كند. ياماموتو به طور مودبانه اى عذرخواهى مى كند: «خيلى معذرت مى خواهم ولى ما زير فشار هستيم.»
    جنبش: چند روز بعد هنگامى كه جورج نيل را ملاقات كردم به نظر مى رسيد كه چندان عجله اى در انجام پروژه ندارد. اين مرد لاغر ۵۸ ساله كه دونده استقامت نيز هست (به تازگى يك مسابقه دوى فوق ماراتن به مسافت ۱۲۵ كيلومتر را در كانادا به پايان رساند)، بيش از ربع قرن است كه درصدد ايجاد ليزر الكترون آزاد است. البته چند سال ديگر نيز طول مى كشد تا آقاى نيل بتواند دستگاهى همانند ماشين حالت جامد آقاى ياماموتو بسازد بنابراين او وقت كافى دارد تا آزمايشگاه خود را به من نشان دهد. اين آزمايشگاه كه «تاسيسات شتاب دهنده ملى توماس جفرسون» نام داشته و متعلق به وزارت انرژى آمريكا است در شهر نيوبورت نيوز ايالت ويرجينيا قرار دارد.نيل درى را كه به صورت مغناطيسى قفل شده است باز مى كند. درونش مجموعه
    درهم برهمى شامل ۷۵ متر لوله مسى، شلنگ هاى لاستيكى و لوله هاى فولادى با اندازه هاى مختلف وجود دارد. تقريباً همه آنها به اين منظور طراحى شده است تا يك كار انجام دهد: توليد انبوه پالس هاى پرقدرتى از الكترون ها كه با ۹۹/۹۹ درصد سرعت نور حركت كند. الكترون ها از ميدان هاى ميكروويو به دقت زمان بندى شده عبور مى كند و در طول مسير سرعت و قدرت خود را به دست مى آورد. آنگاه پرتو الكترونى به وسيله يك «تحريك كننده» فرستاده مى شود. اين تحريك كننده از يك رشته ۲۹ عددى آهن ربا تشكيل شده است كه جريان الكترون ها را به طرف بالا و پايين خم مى كند. در اين فرآيند الكترون ها فوتون منتشر مى كنند و واكنش زنجيره اى ليزر آغاز مى شود. اين واسطه مورد استفاده نيل و پاسخ او به لوحه هاى شفاف ياماموتو و گازهاى سمى ليزر شيميايى او است. با افزايش توان و كيفيت همين پرتو الكترونى بود كه جورج نيل توانست در فناورى خود پيشرفت كند. قابل تنظيم بودن FEL چيزى است كه فرماندهان نظامى در وهله اول به آن علاقه دارند. بيشتر ليزرها در هنگام حركت قدرت خود را از دست مى دهند و به وسيله اتمسفر جذب مى شوند. تنها مقدار كمى باران كافى است تا اوضاع بدتر شود اما يك FEL مى تواند از هر طول موجى كه در هوا جريان پيدا مى كند به بهترين شكل ممكن استفاده كند. موضوع «خالى شدن خشاب بى نهايت» نيز پيش نمى آيد.
    تعجبى ندارد كه آقاى دوگلاس بيسون مدير آزمايشگاه ملى لس آلاموس آن را «جام مقدس ليزرها» ناميده است اما آيا كسى مى تواند مانع آن شود؟ پس از پروژه جنگ ستارگان آقاى نيل همچنان به كار خود ادامه داد و در انتظار فناورى مورد نياز بود. وى ۵ سال در آزمايشگاه توماس جفرسون و بر روى يك دستگاه شتاب دهنده بزرگ ذرات كار كرد. رئيس آزمايشگاه به اين موضوع خوش بين بود كه نيل مى تواند FEL را بسازد. سرانجام در سال ۱۹۹۵ هنگامى كه وقت آن رسيد كه ماشين سرهم شود نيل و گروه تحت سرپرستى او يك FEL جديد را طراحى مى كند كه مى توانست نورى را با قدرت يك كيلووات توليد كند كه البته خيلى كمتر از ليزرهاى پرقدرتى بود كه آنها در اوايل دهه ۱۹۸۰ وعده آن را داده بودند. در سال ۱۹۹۹ آنها موفق شدند كه توان FEL مدل جنگ ستارگان را صد برابر كنند. در سال ۲۰۰۳ توان FEL جديد به ركورد تازه ۱۰ كيلووات رسيد. آقاى نيل با لبخندى حاكى از رضايت مى گويد: «من هميشه اعتقاد داشتم كه فناورى به اين نقطه مى رسد به شرطى كه ما گام هاى محكمى را با اهداف منطقى برداريم.» اكنون نيل مجدداً توجه فرماندهان نظامى آمريكا را به خود جلب كرده است. وزارت دفاع آمريكا در حال سرمايه گذارى ۱۴ ميليون دلارى طى يك سال روى ابزار او است.
    بحث بر سر اين موضوع ادامه دارد كه بهتر است نسل آينده ناوشكن هاى نيروى دريايى با ليزرهاى الكترون آزاد مجهز شود. امروزه كشتى ها فاقد دقت تسليحاتى لازم هستند كه بتوانند حملات قايق هاى كوچك و راكت ها را متوقف كنند. (مانند حمله اى كه قايق متعلق به گروه القاعده در سال ۲۰۰۰ عليه كشتى USS Cole انجام داد) ليزر مى تواند اين وظيفه را به خوبى انجام دهد فقط يك ليزر الكترون آزاد را مى توان تنظيم كرد تا هواى بالاى اقيانوس را بشكافد. در دسامبر ۲۰۰۵ خبر خوشى به جورج نيل رسيد. نيروى دريايى تعهد مناسبى را در به كارگيرى FEL بهبود يافته قبول كرد؛ مبلغ ۱۸۰ ميليون دلار براى يك برنامه هشت ساله چند گروهى. نيل مى نويسد: «چالش سختى فراروى ما است ولى حداقل ما كار را آغاز كرده ايم.» طرح شركت Northrop چندان تفاوتى با طرح ياماموتو نداشت فقط به جاى ۴ لوحه شفاف و بزرگى كه در هسته ماشين ياماموتو قرار داشت Northrop از چندين كريستال كوچكتر استفاده مى كرد. انرژى كمترى بر روى هر كريستال متمركز مى شود بنابراين نقايص كمترى در پرتو ايجاد مى شود. آقاى جف سولى مدير برنامه شركت نورث روپ كه بيش از ۳۰ سال سابقه كار در زمينه انرژى هدايت شده دارد، مى گويد: «تعجب مى كنم كه از يك قطعه شيشه كه به اندازه يك آدامس است چقدر انرژى مى توانيم بگيريم.» پنتاگون ۳۳ ماه به سولى وقت داده است تا ماشين خود را به قدرت مورد نياز ميدان رزم برساند. در اين حال ياماموتو به رغم تصميم پنتاگون عليه او به افزايش آرام كيفيت ليزر خود ادامه مى دهد. او ياد گرفته است كه در دنياى تجارت هر اتفاقى ممكن است رخ دهد.
    Popular Science, May.2006



    93365739541900062743
    profilephpid100002248043280

    22771097565880345367
    facebook

    23759482593804762228
    NewGame7191

  4. #4
    مدير باز نشسته
    تاریخ عضویت
    Jan 1970
    محل سکونت
    Tabriz
    نوشته ها
    5,550
    تشکر تشکر کرده 
    7,087
    تشکر تشکر شده 
    8,503
    تشکر شده در
    2,353 پست
    قدرت امتیاز دهی
    1938
    Array

    پیش فرض

    فيبر نوري چيست و كاربرد و عملكرد فيبر نوري چگونه است

    پيش گفتار

    th919فيبر نوري يكي از محيط هاي انتقال داده با سرعت بالا است . امروزه از فيبر نوري در موارد متفاوتي نظير: شبكه هاي تلفن شهري و بين شهري ، شبكه هاي كامپيوتري و اينترنت استفاده بعمل مي آيد. فيبرنوري رشته اي از تارهاي شيشه اي بوده كه هر يك از تارها داراي ضخامتي معادل تار موي انسان را داشته و از آنان براي انتقال اطلاعات در مسافت هاي طولاني استفاده مي شود.
    مباني فيبر نوري
    فيبر نوري ، رشته اي از تارهاي بسيار نازك شيشه اي بوده كه قطر هر يك از تارها نظير قطر يك تار موي انسان است . تارهاي فوق در كلاف هائي سازماندهي و كابل هاي نوري را بوجود مي آورند. از فيبر نوري بمنظور ارسال سيگنال هاي نوري در مسافت هاي طولاني استفاده مي شود.
    مزاياي فيبر نوري
    فيبر نوري در مقايسه با سيم هاي هاي مسي داراي مزاياي زير است :
    · ارزانتر. هزينه چندين كيلومتر كابل نوري نسبت به سيم هاي مسي كمتر است .
    · نازك تر. قطر فيبرهاي نوري بمراتب كمتر از سيم هاي مسي است .
    · ظرفيت بالا. پهناي باند فيبر نوري بمنظور ارسال اطلاعات بمراتب بيشتر از سيم مسي است .
    · تضعيف ناچيز. تضعيف سيگنال در فيبر نوري بمراتب كمتر از سيم مسي است .
    · سيگنال هاي نوري . برخلاف سيگنال هاي الكتريكي در يك سيم مسي ، سيگنا ل ها ي نوري در يك فيبر تاثيري بر فيبر ديگر نخواهند داشت .
    · مصرف برق پايين . با توجه به سيگنال ها در فيبر نوري كمتر ضعيف مي گردند ، بنابراين مي توان از فرستنده هائي با ميزان برق مصرفي پايين نسبت به فرستنده هاي الكتريكي كه از ولتاژ بالائي استفاده مي نمايند ، استفاده كرد.
    · سيگنال هاي ديجيتال . فيبر نور ي مناسب بمنظور انتقال اطلاعات ديجيتالي است .
    · غير اشتعال زا . با توجه به عدم وجود الكتريسيته ، امكان بروز آتش سوزي وجود نخواهد داشت .
    · سبك وزن . وزن يك كابل فيبر نوري بمراتب كمتر از كابل مسي (قابل مقايسه) است.
    · انعطاف پذير . با توجه به انعظاف پذيري فيبر نوري و قابليت ارسال و دريافت نور از آنان، در موارد متفاوت نظير دوربين هاي ديجيتال با موارد كاربردي خاص مانند : عكس برداري پزشكي ، لوله كشي و ...استفاده مي گردد.
    با توجه به مزاياي فراوان فيبر نوري ، امروزه از اين نوع كابل ها در موارد متفاوتي استفاده مي شود. اكثر شبكه هاي كامپيوتري و يا مخابرات ازراه دور در مقياس وسيعي از فيبر نوري استفاده مي نماين
    بخش هاي مختلف فيبر نوري

    p1360
    يك فيبر نوري از سه بخش متفاوت تشكيل شده است :
    هسته (Core)
    هسته نازك شيشه اي در مركز فيبر كه سيگنا ل هاي نوري در آن حركت مي نمايند.
    روكش Cladding بخش خارجي فيبر بوده كه دورتادور هسته را احاطه كرده و باعث برگشت نورمنعكس شده به هسته مي گردد.
    بافر رويهBuffer Coating
    روكش پلاستيكي كه باعث حفاظت فيبر در مقابل رطوبت و ساير موارد آسيب پذير ، است .
    انواع فيبر نوري
    صدها و هزاران نمونه از رشته هاي نوري فوق در دسته هائي سازماندهي شده و كابل هاي نوري را بوجود مي آورند. هر يك از كلاف هاي فيبر نوري توسط يك روكش هائي با نام Jacket محافظت مي گردند. فيبر هاي نوري در دو گروه عمده ارائه مي گردند:
    فيبرهاي تك حالته (Single-Mode)
    بمنظور ارسال يك سيگنال در هر فيبر استفاده مي شود نظير : تلفن
    فيبرهاي چندحالته Multi-Mode
    بمنظور ارسال چندين سيگنال در يك فيبر استفاده مي شود( نظير : شبكه هاي كامپيوتري)
    فيبرهاي تك حالته داراي يك هسته كوچك ( تقريبا" ۹ ميكرون قطر ) بوده و قادر به ارسال نور ليزري مادون قرمز ( طول موج از ۱۳۰۰ تا ۱۵۵۰ نانومتر) مي باشند. فيبرهاي چند حالته داراي هسته بزرگتر ( تقريبا" ۵ / ۶۲ ميكرون قطر ) و قادر به ارسال نورمادون قرمز از طريق LED مي باشند
    ارسال نور در فيبر نوري

    20
    فرض كنيد ، قصد داشته باشيم با استفاده از يك چراغ قوه يك راهروي بزرگ و مستقيم را روشن نمائيم . همزمان با روشن نمودن چراغ قوه ، نور مربوطه در طول مسير مسفقيم راهرو تابانده شده و آن را روشن خواهد كرد. با توجه به عدم وجود خم و يا پيچ در راهرو در رابطه با تابش نور چراغ قوه مشكلي وجود نداشته و چراغ قوه مي تواند ( با توجه به نوع آن ) محدوده مورد نظر را روشن كرد. در صورتيكه راهروي فوق داراي خم و يا پيچ باشد ، با چه مشكلي برخورد خواهيم كرد؟
    در اين حالت مي توان از يك آيينه در محل پيچ راهرو استفاده تا باعث انعكاس نور از زاويه مربوطه گردد.در صورتيكه راهروي فوق داراي پيچ هاي زيادي باشد ، چه كار بايست كرد؟ در چنين حالتي در تمام طول مسير ديوار راهروي مورد نظر ، مي بايست از آيينه استفاده كرد. بدين ترتيب نور تابانده شده توسط چراغ قوه (با يك زاويه خاص) از نقطه اي به نقطه اي ديگر حركت كرده ( جهش كرده و طول مسير راهرو را طي خواهد كرد). عمليات فوق مشابه آنچيزي است كه در فيبر نوري انجام مي گيرد.

    تكنولوژي ( فن آوري ) فيبر نوري
    نور، در كابل فيبر نوري از طريق هسته (نظير راهروي مثال ارائه شده ) و توسط جهش هاي پيوسته با توجه به سطح آبكاري شده ( Cladding) ( مشابه ديوارهاي شيشه اي مثال ارائه شده ) حركت مي كند.( مجموع انعكاس داخلي ) . با توجه به اينكه سطح آبكاري شده ، قادر به جذب نور موجود در هسته نمي باشد ، نور قادر به حركت در مسافت هاي طولاني مي باشد. برخي از سيگنا ل هاي نوري بدليل عدم خلوص شيشه موجود ، ممكن است دچار نوعي تضعيف در طول هسته گردند. ميزان تضعيف سيگنال نوري به درجه خلوص شيشه و طول موج نور انتقالي دارد. ( مثلا" موج با طول ۸۵۰ نانومتر بين ۶۰ تا ۷۵ درصد در هر كيلومتر ، موج با طول ۱۳۰۰ نانومتر بين ۵۰ تا ۶۰ درصد در هر كيلومتر ، موج با طول ۱۵۵۰ نانومتر بيش از ۵۰ درصد در هر كيلومتر

    سيستم رله فيبر نوري
    بمنظور آگاهي از نحوه استفاده فيبر نوري در سيستم هاي مخابراتي ، مثالي را دنبال خواهيم كرد كه مربوط به يك فيلم سينمائي و يا مستند در رابطه با جنگ جهاني دوم است . در فيلم فوق دو ناوگان دريائي كه بر روي سطح دريا در حال حركت مي باشند ، نياز به برقراري ارتباط با يكديگر در يك وضعيت كاملا" بحراني و توفاني را دارند. يكي از ناوها قصد ارسال پيام براي ناو ديگر را دارد.كاپيتان ناو فوق پيامي براي يك ملوان كه بر روي عرشه كشتي مستقر است ، ارسال مي دارد. ملوان فوق پيام دريافتي را به مجموعه اي از كدهاي مورس ( نقطه و فاصله ) ترجمه مي نمايد. در ادامه ملوان مورد نظر با استفاده از يك نورافكن اقدام به ارسال پيام براي ناو ديگر مي نمايد.
    يك ملوان بر روي عرشه كشتي دوم ، كدهاي مورس ارسالي را مشاهده مي نمايد. در ادامه ملوان فوق كدهاي فوق را به يك زبان خاص ( مثلا" انگليسي ) تبديل و آنها را براي كاپيتان ناو ارسال مي دارد. فرض كنيد فاصله دو ناو فوق از يكديگر بسار زياد ( هزاران مايل ) بوده و بمنظور برقراي ارتباط بين آنها از يك سيتستم مخابراتي مبتني بر فيبر نوري استفاده گردد.
    سيستم رله فيبر نوري از عناصر زير تشكيل شده است :
    فرستنده . مسئول توليد و رمزنگاري سيگنال هاي نوري است .
    فيبر نوري مديريت سيكنال هاي نوري در يك مسافت را برعهده مي گيرد.
    بازياب نوري . بمنظور تقويت سيگنا ل هاي نوري در مسافت هاي طولاني استفاده مي گردد.
    · دريافت كننده نوري . سيگنا ل هاي نوري را دريافت و رمزگشائي مي نمايد.
    در ادامه به بررسي هر يك از عناصر فوق خواهيم پرداخت .
    فرستنده
    وظيفه فرستنده، مشابه نقش ملوان بر روي عرشه كشتي ناو فرستنده پيام است . فرستنده سيگنال هاي نوري را دريافت و دستگاه نوري را بمنظور روشن و خاموش شدن در يك دنباله مناسب ( حركت منسجم ) هدايت مي نمايد. فرستنده ، از لحاظ فيزيكي در مجاورت فيبر نوري قرار داشته و ممكن است داراي يك لنز بمنظور تمركز نور در فيبر باشد. ليزرها داراي توان بمراتب بيشتري نسبت به LED مي باشند. قيمت آنها نيز در مقايسه با LED بمراتب بيشتر است . متداولترين طول موج سيگنا ل هاي نوري ، ۸۵۰ نانومتر ، ۱۳۰۰ نانومتر و ۱۵۵۰ نانومتر است .
    بازياب ( تقويت كننده ) نوري
    همانگونه كه قبلا" اشاره گرديد ، برخي از سيگنال ها در موارديكه مسافت ارسال اطلاعات طولاني بوده ( بيش از يك كيلومتر ) و يا از مواد خالص براي تهيه فيبر نوري ( شيشه ) استفاده نشده باشد ، تضعيف و از بين خواهند رفت . در چنين مواردي و بمنظور تقويت ( بالا بردن ) سيگنا ل هاي نوري تضعيف شده از يك يا چندين " تقويت كننده نوري " استفاده مي گردد. تقويت كننده نوري از فيبرهاي نوري متععدد بهمراه يك روكش خاص (doping) تشكيل مي گردند. بخش دوپينگ با استفاده از يك ليزر پمپ مي گردد . زمانيكه سيگنال تضعيف شده به روكش دوپينگي مي رسد ، انرژي ماحصل از ليزر باعث مي گردد كه مولكول هاي دوپينگ شده، به ليزر تبديل مي گردند. مولكول هاي دوپينگ شده در ادامه باعث انعكاس يك سيگنال نوري جديد و قويتر با همان خصايص سيگنال ورودي تضعيف شده ، خواهند بود.( تقويت كننده ليزري)
    دريافت كننده نوري
    وظيفه دريافت كننده ، مشابه نقش ملوان بر روي عرشه كشتي ناو دريافت كننده پيام است. دستگاه فوق سيگنال هاي ديجيتالي نوري را اخذ و پس از رمزگشائي ، سيگنا ل هاي الكتريكي را براي ساير استفاده كنندگان ( كامپيوتر ، تلفن و ... ) ارسال مي نمايد. دريافت كننده بمنظور تشخيص نور از يك "فتوسل" و يا "فتوديود" استفاده مي كند



    93365739541900062743
    profilephpid100002248043280

    22771097565880345367
    facebook

    23759482593804762228
    NewGame7191

  5. #5
    مدير باز نشسته
    تاریخ عضویت
    Jan 1970
    محل سکونت
    Tabriz
    نوشته ها
    5,550
    تشکر تشکر کرده 
    7,087
    تشکر تشکر شده 
    8,503
    تشکر شده در
    2,353 پست
    قدرت امتیاز دهی
    1938
    Array

    پیش فرض

    080513101620
    ديود هاي نوراني از لحاظ بازده انرژي بي نظيرند. يك LED يك وات حدودا خروجي اپتيكي برابر با يك لامپ 100 وات را دارد . اما اگر نور زياد مورد نظر باشد منابع نور ريز وسيله تابش مناسبي نيستند . يك وسيله اپتيكي جديد براي تغيير شرايط بكار مي رود . اين وسيله نور را به محل دقيق مورد نياز مي تاباند . مثلا در مورد يك چراغ مطالعه نور ميتواند طوري متمركز شود كه تنها يك سطح با اندازه A4 در وسط ميز بطور كامل روشن شود . LED ميتواند مكان مورد نظر را روشن كند ، در حالي كه ساير مكانها همچنان در تاريكي بمانند .
    بنا به گفته دكتر Christian Wenzel رييس دپارتمان تكنولوزي در موسسه فرانهوفر ((IPT :" اين ديود نوراني يك منبع نور نقطه اي است كه كه نور را در ناحيه نامحدود و بزرگي منتشر ميكند . ما از عدسيهاي مخصوصي براي تمركز تمام نور در مكان مورد نظر استفاده ميكنيم كه اين باعث افزايش بازده LED ميشود . بنابر اين محل نوراني ايجاد شده توسط اين منبع نور داراي لبه هاي تيزي در كناره ها خواهد بود و نيم سايه نخواهد داشت . "
    اين روش بر اساس يك سيستم آزاد بنا شده يعني يك عدسي پلاستيكي كه هندسه آن در هر شكل دلخواه ميتواند قرار بگيرد . " اين عدسيها با استفاده از تكنيك قالبهاي تزريقي طراحي ميشوند . دو نيمه وسيله اي كه براي قالب گيري استفاده ميشود با دقت زيادي (در حد چند ميكرون يا كمتر از يك دهم ضخامت موي انسان ) در كنار هم قرار ميگيرند . به محض اتمام قالب گيري اين عدسيها در گروههاي بزرگ و با قيمت كم ميتوانند مورد استفاده قرار بگيرند ." محققان IPT تمام مراحل كار را از طراحي و ساخت عدسيها تا كنترل دقت آنها ، بهينه سازي كرده اند . بنا به گفته اين متخصص شبيه اين روش در جاي ديگري در اروپا بكار نميرود . تنها در يك روش بهتر پلاستيك گرم داخل قالب تزريق ميشود و موقع سرد شدن منقبض ميگردد . كه عدسيهاي بدست آمده كمي كوچكتر خواهند بود. محققان اين اثر را در يك پيشرفت مكرر و تدريجي براي رسيدن به دقت چند ميكرون بكار ميبرند. پس از ساخت عدسيها محققان انها را كنترل ميكنند . براي اين كار انها طرحي از نوارها را بر روي عدسي قرار ميدهند ، اعوجاج نوارها انحنا ، خميدگي و شكل عدسيها را بدست ميدهد.
    محققان كل اين پروسه را به همراه سيستم هاي اپتيكي براي كاربرد عملي در نمايشگاه تجارت اپتيكي در آلمان، فرانكفورت از 17 تا 20 ژوئن به نمايش خواهند گذاشت.




    93365739541900062743
    profilephpid100002248043280

    22771097565880345367
    facebook

    23759482593804762228
    NewGame7191

  6. #6
    مدير باز نشسته
    تاریخ عضویت
    Jan 1970
    محل سکونت
    Tabriz
    نوشته ها
    5,550
    تشکر تشکر کرده 
    7,087
    تشکر تشکر شده 
    8,503
    تشکر شده در
    2,353 پست
    قدرت امتیاز دهی
    1938
    Array

    پیش فرض

    تلسكوپ ها انواع گوناگوني دارند:

    * تلسكوپ هاي شكستي:

    در تلسكوپ شكستي ، عدسي هاي شيئي معمولا از دو عدسي با جنس هاي متفاوت شيشه اي تشكيل شده اند. اين قبيل عدسي ، آكرومات (عدسي ساده) ناميده مي شود. منشور شيشه اي مي تواند براي ساخت رنگين كمان از نور سفيد استفاده شود. اين به دليل اين است كه شيشه، رنگهاي نور را به درجات مختلف منحرف ميكند.

    زماني كه كسي تصوير واضح و تيزي (نوك دار) را از چيزي كه به آن مي نگرد، مي‌خواهد داشته باشد، اين تاثير آزار دهنده مي شود كه بهنام خطاي رنگي[1] (ابيراهي رنگ) شناخته مي شود. آكرومات براي از بين بردن اين تاثير با استفاده از عدسي هايي از دو نوع شيشه طراحي شده است. يكي از عدسي ها كوژ است و جنس آن از شيشه ي گرد[2]است. عدسي ديگر كاو است و از جنس ظرف بلور، چيزي كه اگر مقارن يك عدسي هم شكلش ساخته شود ، متراكم تر و انحراف نور در آن قوي تر از شيشه ي گرد است. اگرچه، همچنين اين انحراف نور بيشتر بطور قوي صورت مي گيرد اما همچنين اختلاف در چگونگي انحراف نورها با رنگهاي مختلف ،حتي به نسبت افزايش مقدار زيادي از انحراف، بيشتر بيان شده است.

    بنابراين ،مي توان دو عدسي نزديك به هم، يكي از شيشه ي بلوري و يكي از شيشه ي گرد ساخته شود كه نور را به دو راه مخالف انحراف دهند. بنابراين اين اختلاف در انحراف رنگها ، اين تاثيرات را از بين مي برد ، اما اين عدسي هنوز خودش يك كار اساسي از انحراف نور گذرنده از ميان آن در يك راستا را ايفا مي كند.

    هرچند ، به علت رفتار رنگهاي مختلف نور در شيشه، يك قانون ساده ي ثابت را دنبال نمي كند، اين حذف كردن ميتواند تنها براين دو رنگ تحميل شود. اين هنوز يك پيشرفت بزرگ خارج از ميدان عدسي است. اما بعضي اوقات يك پيشرفت بزرگتر مطلوب است و سپس يك عدسي از 3 عدسي شيئي براي تلسكوپهاي كمي بيشتر گران قيمت طراحي شد.
    عدسي شيئي روي تلسكوپ، به جاي شبيه بودن به يك بزرگ كننده معمولي عدسي شيشه اي در شكل، بطور مساوي بر هر دو وجه برآمده است، معمولا يك شكل هلالي شده دارد ، و اين قبيل عدسي، عدسي هلالي[3] ناميده مي شوند.

    اين براي كم كرن انحراف ديگري، به نام خطاي كروي [4] انجام شده است. انحراف نور با يك عدسي از قانوني رياضي به نام قانون هاي شكست نور (قانون اسنل) [5] پيروي مي كند ، و اين ناشي از حقيقت نور گذرنده است كه در شيشه آرامتر از آن چه در هوا مي پيمايد، سرعت دارد.

    يك سطح كروي بطور متناسب براي ساخت زمان ساييدن عدسيها آسان است، اما اين تنها يك شباهت زياد، به شكلي است كه سطح آن، مايل به متمركز كرن پرتوهاي وارد آينده به آن در تنها يك نقطه در تصوير است.

    گاهي ، مخصوصا زماني كه خيلي از عدسي ها براي تثبيت هدف، با قالب گرفته شدن از پلاستيك ، ساخته مي شوند، اين بدترين هزينه براي ساخت قالب ضروري كامل تصوير به منظور ساختن سطح ايده آلي از انحراف نور در تصوير است. عدسي هاي شبيه اين با نام عدسي هاي كروي ناميده مي شوند.
    گاهي حتي از اين قبيل عدسي ها از جنس شيشه براي منظورهاي خاصي ساخته مي شوند ، اما اين قبيل عدسي ها گران گرانهستند و بنابراين استفاده ي عمومي ندارند.
    اصطلاح انحنادار، زيرا اين به معناي «غيركروي» است، گاهي ديگر انواع عدسي ها كه ساختن آنها دشوار نيست، استفاده مي شوند. آنها هنوز سطح خميده دارند چيزي كه دايره هايي به جاي خم هاي پيچيده براي ساختن تصاوير كامل را نياز مي شود. براي نمونه، تو شايد عدسي‌هاي استوانه‌اي را كه مي‌تواند يك خط منتشره ي بلندتر را بسازد ، ديده باشي، حتي در ميان آنها ، اين را عريض تر نمي سازد. ازاين قبيل عدسي ها مي توان ابزارهاي نوري كه يك چيز در يك جهت را انجام مي‌دهند و اشيا مختلف ديگر ساخت.

    يك كاربرد اين عدسي هاي تغيير شكل دهنده[6] استفاده براي فشردن عرض تصوير روي پرده‌ي فيلم (2.35 برابر به همان پهناي درازا) در قاب تصوير متحرك فيلم طراحي شده براي تصوير متحرك اصلي به نسبت صفحه كه 1.33 برابر ، به همان پهناي درازا است ، شبيه تصوير روي تلويزيون تو است. (درواقع از زمان اديسون تصوير متحرك استاندارد كمي براي ساختن فيلم هاي معمولي به نسبت صفحه 1.37 : 1 تغيير داده شد. هر چند فيلمها 2.35 :1 به نسبت صفحه هستند، در يك محدوده روي فيلم ضبط شده اند اما فيلم همچنين چندين آثار صداي بزرگ را به خوبي نگه داشت)

    ديگر كاربرد آن عينك است. عدسي هاي عينك معمولا حلقوي هستند و نه كروي ، بطوريكه همچنين مي تواند براي اشتباه روي هم رفته ي فاصله كانوني در عدسي هاي چشمي را تصحيح كند بهاستثناي اختلاف‌ها در فاصله كانوني در جهات گوناگون يا ناهم خوانيهاي بينايي[7] .

    معمولا عدسي هاي شيئي تلسكوپ در تلسكوپهاي شكستي نجومي از ابزار كروي استفاده نمي كنند.

    دو مثال براي تلسكوپ شكستي درمقابل تصوير شده است:


    refract2


    عدسي هاي باريك، خطاي كروي كمتري از عدسي هاي كلفت دارند. حتي بعد از تصحيح براي رفع انحراف رنگي ، دو ابزار شيئي، مختصري كلفت تر از يك عدسي شامل تنها يك ابزار ساخته است، باز هم خطاي كروي هنوز بطور مساعد ضعيف مي باشد.

    درست كردن عملي يك عدسي هلالي، آن را به حداقل مي رساند، زيرا هنگاميكه روي هم رفته شكل عدسي ، سطح منحني را دنبال مي كند تا جايي كه جريان پرتوهاي نور منحرف مي‌شود به جهت مطلوب جديد، هنگامي است كه نگاه داشتن فضاي يكنواخت بين آنها ، ازدست نرود. (البته، چرا آن بايد يك اختلاف پيچيده بسازد.)

    همچنين ممكن است توجه بشود كه انحناها بر عدسي ها در شكل بالا، براي هدفهاي تصويري اغراق شده است.

    زماني كه در جلوي سطح شديدا كوژ شده باشد، در فاصله كانون كوتاهتر تلسكوپ در قسمت پايين تر شكل نشان داده شده است ، تراز كردن نوار انحراف بين دو سطح هدايت كننده به سطح پشتي ،كوژ به جاي كاو مي شود، اما با انحناي سطح كمتر قوي. اين تلسكوپ سومين ابزار را نياز دارد ، همچنين ساخت از فلوئوريت كلسيم يا از گونه خاصي شيشه ، براي تنظيم كردن بيشتر سراسر آن را براي گرايش شيشه به منحرف ساختن نور آبي بيشتر قوي از نور زرد و نور زرد بيشتر قوي از نور قرمز. با دو ابزار ، يك عدسي آكروماتيك مي تواند هر دو نور قرمز و آبي به كانون يكسان بياورد اما نور زرد نيز به جاي كانوني شدن در يك نقطه، به طول معمولي شيشه هاي گرد و بلوري است ، استفاده مي شوند ، انحراف بيشتر قوي و زودتر به كانون آوردن.
    استفاده از 3 ابزار و بطور بيشتر مهم ، ابزاري كه شيشه معمولي نيستند، به 3 رنگ اجازه مي دهد تا به كانون يكساني آورده شوند، اما اين نيز زماني كه كانوني شدن رنگها در بين داشتن اشتباه هاي خيلي كمتر، به خوبي صورت بگيرد ،منجرمي شود.

    اين گونه عدسي ها با توجه به بالا، آكروماتيك هستند. طراحي كردن عدسي آكروماتيك بدون استفاده از فلوئوريت يا مواد شبيه آن ممكن است. پلاستيك ها، از قبيل آكريليك ، نيز با شيشه هاي نوري در دومين قابل فرق مي كنند، گرچه آنها خيلي زياد نسبت به دما از شيشه حساس هستند. همچنين، اينجا اختلاف بين شيشه هاي نوري معمولي كه اجازه بدهد به آنها تا براي ساخت آكروماتيك، به خوبي استفاده شود، وجود دارد.
    اچ دنيس تيلور[8] يك شي نوري–بصري در سال 1895 طراحي كرد چيزي كه به فلوئوريت يا پودر گرد با هم نياز نداشت.

    زيرا فلوئوريت بيشتر بطور قوي، با شيشه هاي معمولي فرق مي كند، هرچند يك آكروماتيكي كه از فلوئوريت استفاده كند (دوباره يا شيشه اي كه تقريبا شبيه آن باشد) به داشتن سطحي هرچند داراي انحناي قوي ، براي بدست آوردن فاصله كانوني مشابه، نياز ندارد. ابزار مثبت و منفي عدسي، نياز رسيدن كامل براي نزديك شدن به حذف هر قدرت خارجي ديگري را، انجام نمي دهد. اين تصميمها انحراف ديگر عدسي را داراست. آكروماتيكِ اچ دنيس تيلور طراحي شد، براي استفاده در تلسكوپ f/16 ، فاصله اي كه بيشتر مردم براي تلسكوپهاي شكستي آكروماتيك نشان مي دادند، چيزي كه هنوز براي تصاوير عالي دردسترس قرار دارد. 3 ابزار آكروماتيك -با فلوئوريت- مشابه ابزار ، ازطرفي ، اجازه داد، تلسكوپي ساخته شود كه تصاوير گيرا در فاصله كانوني f/6 را انتقال خواهد داد و دو ابزار عدسي ها كه خطاي كروي را با استفاده از فلوئوريت كم مي‌كند – مشابه ابزار ، حتي اگر كسي درباره استفاده از اصطلاح «آكروماتيك» براي توضيح آن بپرسد، مي تواند هنوز شبيه f/9 انجام دهد.

    * تلسكوپهاي نيتوني:

    گونه ديگر معمول تلسكوپ، تلسكوپهاي نيوتني[9] هستند كه معمولا از ابزار غيركروي براي ساخت آنها استفاده مي شود. در تلسكوپ نيوتني جاي عدسي شيئي با آينه كاو جايگزين مي شود، چيزي كه مي‌تواند بزرگ كند و از تصاوير در بسياري مشابه طرز عدسي كوژ باشد. يك آينه يدكي، آينه تخت كوچك كه به نام مورب [10] ناميده مي شود كه براي خارج نگهداشتن سر شخص استفاده كننده از تلسكوپ از راه ورود نور مي باشد.
    اين گونه تلسكوپ درمقابل تصوير شده است:


    در تلسكوپ نيوتني ،آينه كه كار مشاهده را انجام مي دهد به نام آينه نخست ناميده مي شود و معمولا بصورت كروي جايگزين نمي شود، اما در طي سايش براي گرفتن ، بر روي شكل سهميگون با دقت تنظيم مي شود. (بنابراين مرحله اي به نام سهموي كردن آينه را تنظيم مي كند.)

    newton

    * تلسكوپهاي ماكستوف:

    نوع ديگر تلسكوپ با نام تلسكوپ ماكستوف[11] شناخته مي شود. اين تلسكوپ براي استفاده در بعضي تلسكوپهاي خيلي گران با اندازه نسبتا كوچك، طراحي شده است. اخيرا ، بيشتر هزينه هاي قابل كنترل تلسكوپهايي ازاين گونه دارد فراهم مي شود. اين تلسكوپ شهرت خيلي خوبي براي كيفيت نوري خود دارد. در اين تلسكوپ، آينه نخست با كروي جايگزين شده است. يك ابزار كلفت شيشه اي در جلوي تلسكوپ ، با خميدگي مشابه بر جلو و عقب، به عنوان مصحح براي خطاي كروي آينه رفتار مي كند.

    يه طور مخصوص درمقابل از تلسكوپ ماكستوف تصوير شده است. همچنين نقطه ي دايره اي در مركز آن وجود دارد كه در داخل آينه آن پوشانده شده است. اين آينه نوري را كه معمولا به كانون آورده مي شود ، كمي فراتر از اين بازتاب مي كند و چون كه اين آينه سهمويگون است ، كانوني كردن بازتاب نور بازتاب شده در آن تاخير دارد تا اين نور به پشت تلسكوپ از ميان سوراخي در مركز آينه نخست بيرون برود.

    maksutov

    تلاشي ،براي كشيدن شكل مقياسي ساخته شده است، كه بر طراحي حقيقي در دفتر ديميتري ماكستوف[12] بنا شده است. هرچند فاصله از سطح آينه خارجي پشت تلسكوپ تا سطح صاف كانون در عدسي چشمي هنوز اغراق مي شود.

    اين به خصوص از تلسكوپ ماكستوف-كاسگرين[13] عموما شناخته مي شود به نام تلسكوپ گريگوري ماكستوف [14] ، زيرا جان گريگوري طراحي اي شامل نقطه ي نقره پوش كرد كه ابتدا درغرب به خوبي شناخته شد. طرح نشان داده شد در تصوير بالا براي تلسكوپ f/9 است. تلسكوپهاي ممتاز نوري كاملا با آنها تركيب شده اند.

    مشابه، اما كمتر گران و بنابراين محبوبيت مردمي اين نوع تلسكوپ بيشتر است كه اشميت كاسگرين تلسكوپ[15] ناميده مي شود. در آن، به جاي يك قطعه ي كلفت شيشه اي با دو سطح كروي ،اصلاح با قطعه ي خيلي نازك شيشه اي ، تخت بر روي يكطرف و با سطح غيركروي روي طرف ديگر ميسر مي شود.

    schmidt

    اينجا ،آينه براي بازتاب نور به عقب از ميان انتهاي تلسكوپ به جلو وسيله بازگردانده مي شود. اينگونه تلسكوپ عموما فاصله ي كانوني f/10 با 8 ثانيه (يا 220 ميليمتر) يا دهانه بزرگتر دارد. كسي با 4 ثانيه (يا110 ميليمتر) دهانه شايد ، كمي آهسته فاصله ي كانوني f/12 داشته باشد.


    93365739541900062743
    profilephpid100002248043280

    22771097565880345367
    facebook

    23759482593804762228
    NewGame7191

  7. #7
    مدير باز نشسته
    تاریخ عضویت
    Jan 1970
    محل سکونت
    Tabriz
    نوشته ها
    5,550
    تشکر تشکر کرده 
    7,087
    تشکر تشکر شده 
    8,503
    تشکر شده در
    2,353 پست
    قدرت امتیاز دهی
    1938
    Array

    پیش فرض


    پديده ي فعاليت نوري كه قابليت چرخيدن وضعيت قطبيدگي نورميباشد، يك اثر بنيادي الكتروديناميك است كه به طور مرسوم به عدم تقارن آينه اي (خصلت كايرالي) مولكولهاي آلي، پروتئين ها و ساختارهاي معدني مربوط ميشود.

    اين اثر اهميت زيادي براي شيمي تجزيه، بلورشناسي، بيولوژي مولكولي و صنعت غذايي دارد و هم چنين اثري مشخص است كه براي رديابي و يافتن اشكال زندگي در ماموريتهاي فضايي به كار ميرود.

    شناسايي خصلت كايرالي به عنوان يك انكسار منفي نور منبع (منشا) كه براي ايجاد يك لنز كامل مورد نياز است كاري جدي و پشتكارانه را در گسترش مايكروويو و متا مواد كايرال نوري مصنوعي (به ما) القا كرد.

    در اين مقاله ما نتايج تاحدي شگفت انگيزي را نشان مي دهيم (و آن اينكه) ممكن است فعاليتهاي خيلي قوي نوري در يك سيستم متامواد متشكل از متامولكولها ديده شوند كه به خودي خود كايرال نيستند.

    اينجا كايراليته از جهت متقابل مسير انتشار موج و متا مواد دو بعدي كشيده شده است .

    ما مفهوم فعاليت نوري با استفاده از يك ساختار متامواد مسطح غير كايرال كه به روش مصنوعي ايجاد شده را شرح مي دهيم و نشان مي دهيم كه اين فعاليت نوري به طور غير قابل تشخيصي ازآنچه كه براي سيستمهاي مولكولي سه بعدي كايرال آشكار كننده ي شكست مضاعف تشديد شده و دورنگي براي امواج الكترومغناطيسي به طور مدور قطبيده ديده شده، رفتار مي كند. فعاليت نوري تشديد شده ي قوي مشاهده شده كه با ظهور يك موج معكوس، كه ويژگي واسطه ي منفي شاخص است همراه شده است.

    فعاليت نوري براي اولين بار در 1811 توسط دومينيكو اراگو (Arago(Dominique ديده شد و از آن زمان به بعد، به وسيله ي (از طريق) كوششهاي چندين نسل از محققان به مولكولهاي كاملا سه بعدي شناخته شده بعنوان داراي خصلت كايرالي پيوند خورد؛ كايراليته يك ساختار مولكولي مانند يك مارپيچ است كه براي آن تصاوير آينه اي نامتجانس داراي عدم تقارن كافي براي نشان دادن چرخش قطبيدگي (فعاليت نوري) ميباشند.

    اثر فعاليت نوري با پديده ي دورنگي دايره اي براي نمونه جذب تفكيكي براي قطبيدگي
    دايره اي چپ و راست، پيوند دارد .

    تلاش اخير در ايجاد مصنوعي متا مواد فعال نوري كه براي دست يافتن به فعاليت نوري قوي، مورد نظر واقع شده است، بر روي انواع مختلف آرايه هاي كايرال سه بعدي متا مولكولها متمركز شد.

    عمدتا كمتر تاييد شده است كه زماني فعاليت نوري مي تواند ديده شود كه
    مولكولهاي غير كايرال جهت دار يك كايرال سه تايي در جهت بردار موجي نور مي سازند.
    اين شيوه فعاليت نوري اولين بار توسط Bunn توضيح داده شد و دركريستالهاي مايع مورد رديابي قرار گرفت.




    n20dnl
    شكل 1 : متامواد شكافدار مسطح مبني بر آرايه اي از حلقه هاي شكاف بدون تقارن كه فعاليت نوري و دورنگي دايره اي در تابش مايل نور را نشان مي دهد. جهت عدم تقارن با يك بردار قطبي s نمايش داده شده است (از كمان بلند به كمان كوتاه جهت دارد). فعاليت نوري زماني ديده مي شود كه صفحه ي متامواد پيرامون محور x منحرف شده است. بنابراين نمونه ي معمول n در زاويه اي α≠0 با بردار موج موج فرودي k قرار دارد. وضعيت I و II دو ترتيب انانتيومتري هستند كه فعاليت نوري علامتهاي مخالف را نشان مي دهند. وضعيت III متناظر با تابش معمولي هيچ فعاليت نوري را نشان نمي دهد.




    اينجا ما نشان مي دهيم كه اين يك شيوه پر اهميت فعاليت نوري در متا موادي است كه
    مي توانند بعنوان ساختارهاي ذاتا مسطح كه نه خصلت كايرالي دو بعدي دارند نه خصلت كايرالي سه بعدي و براي ساختن نسبت به متا مواد مبني بر آرايه هاي متامولكولي كايرال سه بعدي ساده تر هستند، ديده شوند.

    ما بحث كرديم كه براي نشان دادن فعاليت نوري، متا مولكولهاي يك ساختار متامواد مسطح مي توانند يك خط تقارن آينه اي داشته باشند، اما بايستي فاقد يك مركز وارونه سازي باشند. آنها بايد يك جهت قطبي s (همانطور كه در شكل 1 نشان داده شده است) داشته باشند.




    v33cev
    شكل 2 : يك قطعه از متامواد شكافدار مسطح ساختگي درفيلم ضخيم آلومينيوم عكسبرداري شده در برابر يك زمينه ي نور. برش سايه روشن مربع ساختمان اصلي بلوك دوبعدي متناوب ساختار متامواد را نشان مي دهد. نوار در قسمت پايين عكس طول موج λ تابش در قطبش تشديد شده اي كه مشاهده شده بود را نشان مي دهد.



    يك آرايه ي منظم جهت دار از چنين متامولكولهايي هيچ فعاليت نوري را در انتشار معمولي نشان نخواهند داد. با اين حال، متا مواد در انتشار مورب به طور نوري در صورتي فعال خواهند شد كه سطح انتشار داراي جهت قطبي نباشد. در واقع، در اين بحث بردار موجي k بر صفحه ي n عمود است. و بردار قطبي s يك مجموعه كايرال سه بعدي را تشكيل مي دهد.

    شكلهاي انانتيومر اين بردارها با فعاليت نوري علامتهاي مخالف كه با كج كردن صفحه ي ساختار در جهت هاي وارونه نسبت به بردارموج فرودي ايجاد شده اند، مطابقت دارد.
    (I و II در شكل 1 را مقايسه كنيد).

    ما فعاليت نوري را در يك ورق نازك فلزي قائم مشبك با يك آرايش منظم دو بعدي از حلقه هاي شكاف دار مشاهده كرديم (شكل 2).

    حلقه هاي شكاف به طور غير متقارن به جفت كمانها با طول متفاوت جداشده با درزهاي هم اندازه، شكافته شده اند. هر حلقه ي شكاف يك خط از تقارن آينه اي در طول محور x دارد اما هيچ محور دو تايي چرخشي ندارد اين مورد ما را قادر ميكند تا يك بردار قطبي sرا نشان دهيم كه در نمونه ما به سوي كمان كوتاهتر نشانه رفته است (شكل 1 را ببينيد).

    محمدوده ي اثر در چنين ساختار مسطح غير كايرالي ممكن است با در نظر گرفتن يك"سلول واحد" كه شامل يك بخش از صفحه ي فلزي منحرف شده با يك تك چاك حلقه ي شكاف است به آساني ديده شود (شكل 1).

    با استفاده از مجموعه اصطلاحات مبحث بلور شناسي، اگر جهت انتشار نور با چندين موقعيت مواجه شود يك "جهت پيچي " از سلول واحد خواهد بود
    (يعني جهت پيچيدن خواهد داشت).
    اول، خود سلول واحد نبايستي داراي مركز وارونه سازي داشته باشد كه اين بوسيله ي عدم تقارن حلقه هاي شكافدار تضمين شده است.
    دوم، آنجا نبايد هيچ انعكاس قرينه در صفحه ي عمود بر جهت انتشار موجود باشد كه توسط برخورد تابش مورب فراهم شده باشد.


    سوم ، آنجا نبايد هيچ وارونه سازي يا محور چرخش بازتابي در امتداد جهت انتشار باشد كه اين توسط برخورد مورب و شكاف نامتقارن فراهم شده است.

    و در پايان آنجا نبايد هيچ انعكاس قرينه اي براي هر سطح شامل جهت انتشار باشد. اين شرط فقط اگر شكاف عمودي نباشد و بنابراين بردار s موازي با صفحه ي برخورد yz نباشد تحقق يافته است .

    بنابراين با مراجعه به شكل 1 در وضعيت I و II جهت انتشار نور يك جهت پيچش است و فعاليت نوري را حمايت مي كند. در مقابل حالت III، برخورد معمولي براي دومين، سومين و چهارمين حالت آزمون "جهت پيچش" شكست مي خورد. براي نمونه در برخورد معمولي اينجا يك صفحه ي انعكاس قرينه داراي جهت انتشار وجود دارد .

    در آزمايشات ما تلفات و دوره هاي تاخير براي امواج الكترومغناطيسي به طور مدور قطبيده منتشر شده در ميان متامواد را اندازه گيري كرديم (شكل 2 را ببينيد). ساختار شكاف شماري از ويژگي هاي مرموز و مفيد را دارد.

    ذاتا وجود ورقه ي فلزي مشبك براي تابش الكترومغناطيس مجزا از يك محدوده طيفي باريك حدود فركانس تشديد شفاف نيست كه در اين فركانس طول موج تقريبا دوبرابر طول شكافها است.

    عمل پخش در تشديد به طور فوق العاده بالاست و به طور اساسي با كسري از ناحيه ي گرفته شده بوسيله ي برشها پيشي مي گيرد. چون تلفات ژول در فلزات در اين بسامدها ناچيز است، انرژي تابش بين تابش منعكس شده و ارسال شده تقسيم مي شود و در انعكاس تشديد اندك است.

    نزديك بسامد تشديد و يك اكتاو بالاتر از آن، ساختار، تابش الكترومغناطيسي را نمي پراشد، بلكه تابش الكترومغناطيسي براي طول موجهاي كوتاهتر از گام آرايه پراشنده مي شود.

    همانطور كه نشان داده خواهد شد پايين ساختار يك تشديد به شكل زنگ درآمده ي قوي دوشكستي دايره وار را نشان مي دهد كه منجر به يك چرخش قطبيدگي قوي مي شود، در حاليكه دورنگي مدور در پايين ترين نقطه در تشديد است.

    اين ويژگي خيلي مفيد درمقايسه اي قابل توجه با فعاليت نوري در اغلب سيستمهاي مولكولي است جايي كه به طور مشخص چرخش قطبيدگي تشديد قوي توسط دورنگي مدورذاتي منتج شده با قطبيدگي بيضوي، همراه شده است.

    به علاوه درتشديد فعاليت نوري، سيستم دوشكستي غير خطي (غير منظم) را نشان
    مي دهد و بنابراين حالات انرژي دو قطبش مدور با اتلافهاي ملايم يك نوع هستند كه ايجاد يك چنين ساختاري يك نقشه ي ايده آل براي مشاهده ي يك ضريب انكسار منفي براي قطبشهاي دايره اي است.





    nzmvk9
    شكل 3 : (a) دورنگي دايره اي Δ و (b) دوشكستي دايره اي δΦ ساختار متامواد مسطح اندازه گيري شده در وضعيتهاي انتشار I ،II (زاويه تمايل α=±30°) و III (α=0°) نشان داده شده در شكل 1





    اگر ساختار بعنوان يك "جعبه سياه" در نظر گرفته شود، اندازه گيري اتلافها و مرحله هاي تاخير براي امواج الكترومغناطيسي به طور دايره وار قطبيده شده ، اطلاعات درباره ي دورنگي مدور و فعاليت نوري متوسط در "جعبه سياه" را تامين مي كند.

    در اصطلاحات كاربردي ما ماتريس تركيب انتقال tij براي امواج به طور دايره وار قطبيده شده را اندازه گيري كرديم . اينجا زيرنويسهاي + و – به طور مشابه چپ و راست امواج به طور دايره وار قطبيده شده را مشخص مي كنند. اندازه گيري هاي ما نشان مي دهد كه عناصر قطري (t ++وt - - ) معمولا نشان دهنده ي اين نيستند كه ساختار واقعا فعال نوري است.
    تفاوت بين مقادير عناصر قطريΔ= |t++|2- |t--|2 يك اندازه از دورنگي مدور "جعبه سياه" است در حاليكه در مقابل اختلاف فاز يك اندازه از دو شكستي مدور خودش است. (δφ=arg(t++)-arg(t--)) (شكل 3 را ببينيد.)

    عناصر غير قطري ماتريس در حدود دقت آزمايشي برابرند كه حضور مورد انتظار مقداري ناهمساني در ساختار را نمايان مي كند، اما يك فقدان كامل اثرات عدم تقارن انتقالي اخيرا كشف شده در ساختارهاي كايرال مسطح را نيز نشان مي دهد. در تمام موارد آزمايش انجام شده در جهتهاي متضاد انتشار موج نتايج يكساني نشان مي دهد.

    ويژگي هاي مشخصه اي زير از مفهوم در آزمايش مشاهده شده بود:

    i ) هيچ دوشكستي مدور يا دورنگي در انتشار معمولي براي آرايه ي متا مواد ديده نشده است (α=0)

    ii) معادله ي برخورد درجهت هاي مخالف، دورنگي مدور و دوشكستي مدور در علامت مخالف را ثمر مي دهد.

    اثر مشاهده شده يك تشديدكننده ي طبيعي دارد كه پيرامون تشديد بين 9 گيگاهرتز و 10 گيگاهرتز در جايي كه ميانگين قوس طول مطابق با تقريبا نصف طول موج است، قويترين است.










    24o66ut
    شكل 4: پاسخهاي الكتريكي و مغناطيسي در يك سيم حلقه ي شكافدار غير متقارن .جريانهاي نوساني در حلقه ي شكافدار a ) مي تواند به عنوان مجموع تقارني معرفي شود b ) و پاد تقارني c ) جريانهايي كه با دوقطبي الكتريكي القا شده در صفحه ي حلقه ي d (پيكان سبز رنگ) و دوقطبي مغناطيسي عمود بر صفحه ي m (پيكان قرمز رنگ) مرتبط است. براي حلقه هاي شكافدار غيرمتقارن منحرف شده، اگر تصوير d وm بر صفحه ي عمود بر بردار k (به طور متناظر با پيكانهاي سبز و قرمز نقطه چين شده ) قائم باشند چرخش قطبيدگي تنها وجود ندارد (d) اگر هردوي اين تصوير ها موازي باشند (e) يا غير موازي باشند (f) قويترين چرخش قطبيدگي جايي رخ مي دهد كه فعاليت نوري براي نمونه هاي (e) و (f) علامتهاي مخالف دارد .





    علت ميكروسكوپي فعاليت نوري متا مواد شكافدار مي تواند با مطرح كردن يك ساختار مكمل كه آرايه اي از شكافها نيست بلكه آرايه اي از سيمهاي فلزي در شكل حلقه هاي شكافدار است به راحتي فهميده شود (شكل4 را ببينيد). مانند فعاليت نوري مرسوم نمايش داده شده بوسيله ي مولكولهاي كايرال، اثر بايد درحضور هر دو پاسخ الكتريكي و مغناطيسي نتيجه شود.اينجا، عدم تقارن ساختاري حلقه هاي شكاف دار نقشي كليدي ايفا مي كنند : همانطور كه در شكل 4(a) نشان داده شده يك موج قطبيده در امتداد شكاف جريانهاي نوساني نابرابر در بالا و پايين قوسهاي حلقه را تحريك مي كند كه اين ممكن است بعنوان يك جمع جريانهاي متقارن و نامتقارن نشان داده شود كه مطابق است با تحريك الكتريك دو قطبي در سطح حلقه و دوقطبي مغناطيس عمود بر حلقه (شكلهاي(c) و4(b) را ببينيد) .
    اكنون ما بايد انتشار غير معمول موج بر ساختار را بررسي كنيم (شكلهاي4(d)-4(f) را ببينيد).


    اينجا پيكانهاي آبي، قرمز و سبز، بردار موج k و مغناطيس تحريك شده m و الكتريك d دو قطبي هاي واحد سلول متامواد را نمايش مي دهند، در حاليكه پيكانهاي خط چين تصوير متناظر دوقطبي گشتاورهاي به طرف صفحه عمود بر بردار موج را نشان مي دهند.

    دوقطبي مغناطيسي هميشه در جهت عمود بر صفحه ي ساختار است و چنانكه ما در بالا ديديم دو قطبي مغناطيسي با جابجايي ميدان الكتريكي در امتداد شكاف برانگيخته ميشود. اگر شكاف بر صفحه ي انتشارعمود نباشد ساختار فعاليت نوري را نشان مي دهد.

    بيشترين فعاليت نوري زماني مشاهده شده كه شكاف موازي صفحه ي انتشار است،
    در اين نمونه، بردار موج و دوقطبي هاي تحريك شده ي الكتريكي و مغناطيسي هم صفحه هستند. اختلاف فاز دو طرفه بين پاسخهاي الكتريكي و مغناطيسي و بنابراين علامت فعاليت نوري به علامت شيب بستگي دارد (تصوير دوقطبي هاي الكتريكي و مغناطيسي در شكلهاي 4(e)و4(f) مقايسه كنيد). به طور مشابه با آنچه كه در واسطه كايرال مرسوم اتفاق مي افتد، زماني كه بردار موج و دوقطبي هاي الكتريكي ومغناطيسي تحريك شده "متامولكول" هم صفحه هستند دو قطبي نوساني، امواج الكترومغناطيسي پراكنده با قطبيدگي هاي عمودي در جهت انتشار موج ايجاد مي كند و بنابراين قطبيدگي موج منتقل شده مي چرخد.

    در مقابل، اگر شكاف عمود بر صفحه ي انتشار باشد دو قطبي هاي الكتريكي و مغناطيسي تحريك شده به خوبي تصويرشان عمودي هستند و ساختار هيچ فعاليت نوري نشان
    نمي دهد (شكل4(d) را ببينيد ): دو قطبي هاي الكتريكي و مغناطيسي نوسان كننده، امواج الكترومغناطيسي از قطبش مشابه را منتشر مي كنند كه در امتداد جهت موج فرودي پخش مي شوند. مطابق قاعده بابينت ساختار شكافدار متامواد بحث شده در بالا، تشديدهاي قطبيدگي مشابه در همان باند بسامدي را نشان خواهند داد .








    ri66fpri66fp
    شكل 5 : (a) پراكندگي تاخير فاز Φ براي امواج قطبيده ي مدور منتقل شده ي چپ و راست . قسمتهاي سايه دار، حدود بسامد با حالت انرژي تقريبا دايره اي جايي كه سرعت فاز pν و گروه فاز gν براي قطبيدگي دايره اي راست علامتهاي مخالف دارند كه مشخصه اي براي واسطه ي دست چپ است را نشان مي دهد .(b) شدت منتقل شده ي هردو
    امواج قطبيده ي مدور چپ و راست . (c) بازده تبديل مدور كه يك نشان مستقيم از نامتقارني (دوشكستي خطي) از پاسخ متامواد است. داده ها در تمام تابلوها با وضعيت انتشار I نشان داده شده در شكل 1 جايي كه زاويه ي انحراف برابرα=30° است، مرتبط هستند.




    در متامواد شكافدار، در باندطيفي تشديد از حدود 9 تا 10 گيگاهرتز، ناهمساني كاملا
    ناپديد مي شود (اينجا تبديل مدورt+-= t-+ = 1/2.(txx –tyy ) ناچيز است همانطور كه در شكل 5(c) نشان داده شده است).

    حالات انرژي قطبش خيلي نزديك به دايره وارهستند و در جهت بردارk ، مواد بعنوان ايزوتروپ نوري متوسط فعال رفتار مي كنند. به علاوه، در دسته ي طيفي اتلاف نشان داده شده توسط |t++|2 و |t--|2 نسبتا كوچك هستند ( شكل 5(b) را ببينيد).

    به طور مهم، اينجا فاز سرعت (νp ~ ω/φ جايي كه =2πƒω ) و سرعت دسته
    (νg ~ dω/dφ) براي قطبيدگي دايره اي راست علامتهاي مخالف نشان دهنده ي ظاهر يك موج وارونه دارد ( شكل 5(a) را ببينيد).

    و پاياني، مدرك رفتار دست چپ مواد و نشانه اي از انكسار منفي درجسم واسطه كايرال تشديد شده است. بر طبق" پيش بيني پندراي" انكسار منفي بايد در تشديد براي يكي از قطبيدگي هاي دايره اي تنها درمبادله با قطبيدگي دايره اي مخالف درتركيب انانتيومتري واسطه ديده شود. اين درست چيزي است كه ما در آزمايشات خود مشاهده كرديم :

    علامتهاي مخالف گروه و سرعت فاز براي قطبيدگي دايره اي راست در30°= α و براي موج قطبيده چپ براي آرايش انانتيومتري در -30°=α ديده شده اند . اينجا قسمت واقعي ضريب انعكاس موثر مي تواند برآورد شود بعنوان n ≈ -|cφ/ωh| ≈ - 2.5جايي كه h پهناي ساختار در جهت انتشارش است.

    در پايان ما تشديد قوي فعاليت نوري استفاده شده در يك متامواد غير كايرال مسطح را
    نشان داده ايم، براي اينكه همچنين علامتهاي امواج وارونه قطبيده ي به طور دايره اي را مشاهده كرديم. ما استدلال كرديم كه پشته سازي چنين ساختارهاي مسطح ساده اي ممكن است فرصتي براي توسعه ي از نظر فني بالاي مناسب و كاربردي ضريب منفي واسطه تامين كند.

    * خلاصه روش ها:

    - نمونه توصيف و ساخت:

    متا مواد مسطح دو دوره اي با يك سلول واحد جذر 15 *15 mm2 (شكل 1 را ببينيد) ، كه مطمئن مي سازد كه ساختار تابش الكترومغناطيس را در وقوع معمول براي فركانسهاي كمتر از 20 گيگاهرتز نمي پراشد. اندازه تمام نمونه تقريبا 220 * 220 mm2 بود. سلول واحد
    متا مواد شامل يك حلقه شكاف دار به طور بدون تقارن شكافته با پهناي 1mm و شعاع 6mm در ورقه ي آلومينيوم مستقل1mm ضخامت كنگره دار شده مي شود .

    - تكنيك اندازه گيري:

    تمام اندازه گيري هاي انتقال در يك اتاق بدون انعكاس در حدود فركانسي 3 – 15 گيگاهرتز استفاده شده از شاخه آنتن هاي پهن باند تجهيز شده توسط لنز متمركزكننده و يك شبكه تحليل بردار ايجاد شدند.








    93365739541900062743
    profilephpid100002248043280

    22771097565880345367
    facebook

    23759482593804762228
    NewGame7191

  8. #8
    مدير باز نشسته
    تاریخ عضویت
    Jan 1970
    محل سکونت
    Tabriz
    نوشته ها
    5,550
    تشکر تشکر کرده 
    7,087
    تشکر تشکر شده 
    8,503
    تشکر شده در
    2,353 پست
    قدرت امتیاز دهی
    1938
    Array

    پیش فرض

    توليد اشعه X با نوار چسب

    مترجم : امين روستاپور

    باز كردن سريع نوار چسب توليد نور مي كند. آنهم از نوع اشعه ...

    كريسمس امسال كه هداياي خود را باز مي كنيد مراقب باشيد.كندن نوار چسبها باعث ايجاد اشعه X ميشود.

    پژوهشگران در دانشگاه كاليفرنيا-لس آنجلس نشان دادهاند كه كندن نوار چسبهاي معمولي در خلاء اشعه X توليد مي كند.ميزان توليد آن به اندازه كافي بوده است كه از آن براي عكسبرداري از استخوان انگشت يكي از دانشمندان شركت كننده در اين آزمايش استفاده شود.

    "از برخي جهات ما كمي ترسيده بوديم" اين نقل قولي است از Juan Escobar يكي از اعضاي اين تيم تحقيقاتي. اما او و همكارانش بزودي دريافتند كه اشعه X تنها وقتي ساطع مي شود كه اين آزمايش در شرايط خلاء انجام گيرد.لذا دليلي براي ترس مردم در استفاده روزمره از نوار چسبها وجود ندارد.

    اين نوع آزادسازي انرژي triboluminescence نام داشته و به صورت تابش نور مشاهده مي شود.

    اين پديده زماني روي مي دهد كه يك جامد(غالبا يك كريستال-بلور) شكسته شده يا ماليده شده يا خراشيده شود. اين يك پديده رازآلود است كه از زمانهاي قديم مكرر مشاهده شده است.فرانسيس بيكنFrancis Bacon در سال 1605 ميلادي آن را مشاهده كرده بود.او گزارش كرده است كه خراشيدن يك تكه بلور شكر باعث ساطع شدن نور از آن شده است.

    توضيح اين پديده بدين صورت است كه وقتي يك تكه كريستال خرد مي شود اين عمل باعث مي شود تا بارهاي الكتريكي مخالف و غير همنام از يكديگر جدا شده و فاصله بگيرند.سپس تخليه الكتريكي ايجاد شده و اين آزادسازي انرژي بصورت بارقه اي از نور نمايان مي شود.

    Escobar اضافه ميكند:

    از مدتها قبل حدود سال ۱۹۵۳ ميلادي گروهي از دانشمندان روسي اظهار كرده بودند كه كندن نوار چسب مي تواند اشعه X توليد كند.ولي ما در باره نتايج آزمايشهاي قديمي آنها بسيار بد بين بوديم.تيم ما تصميم گرفت تا اين آزمايشات را با دقت بيشتري نجام دهد. و با كمال تعجب مشاهده نموديم كه در اين آزمايش اشعه X به شكل پالسهاي پر انرژي آزاد مي شود.

    وقتي اين پژوهشگران يك دريچه پلاستيكي را بروي مخزن ايجاد خلاء خود تعبيه كردند موفق شدند با استفاده از يك آشكارساز معمولي اشعه X دندانپزشكي از استخوان انگشت عكسبرداري كنند.نتايج آزمايش آنها در آخرين شماره مجله علمي Nature به چاپ رسيده است.

    Escobar اضافه ميكند:

    از ميان تخليه هاي الكتريكي كه انجام مي شود فقط يك در ده هزار آنها توليد اشعه X ميكند.انرژي هر تك پالس اشعه X در مدت زماني معادل چند نانو ثانيه حدود ۱۵ كيلو الكترون ولت است.
    news20081185 2
    تصوير گرفته شده از استخوان انگشت با استفاده از نوار چسب

    انرژي اشعه Xمسقيما به مقدار بار الكتريكي بستگي دارد كه در لحظه كندن نوار چسب در سطح آنتوليد مي شود.دانشمندان محاسبه نمودهاند كه مقدار اين بار الكتريكي ده ها بار بزرگتر از آن چيزي است كه در آزمايشهاي معمولي ديده مي شود.

    Escobar مي گويد:"ما دقيقا نمي دانيم چرا نوار چسب تا اين حد بسيار زياد باردار است."

    ماشين اشعه X نوارچسبي ساير دانشمندان را نيز گيج كرده است.

    Ken Suslick متخصص در mechanoluminescence از دانشگاه الينويز در Urbana-Champaign مي گويد:" ما اصلا فكر نميكرديم كه اكثر انرژي مكانيكي قابليت اين را داشته باشد كه به صورت اشعه X آزاد شود.چسب استفاده شده در نوار چسبها يك مايع غير متبلور است نه يك كريستال.دقيقا چه چيزي باعث انقال بار الكتريكي شده است؟گروه هاي دهنده و گيرنده بار الكتريكي در اين آزمايش كدامند؟"

    اين مسئله هنوز دقيقا واضح نيست.

    پژوهشگران حدس مي زنند كه چگالي بالاي بار الكتريكي توليد شده در اين آزمايش به ميزان كافي زياد باشد كه يك واكنش همجوشي هسته اي را استارت بزند.

    البته Michael Loughlin دانشمند علوم هستهاي آزمايشگاه بين المللي همجوشي هسته اي ITERدر Cadarache فرانسه به اين مسئله به ديده ترديد مي نگرد.ولي با وجود اين اضافه مي كند كه اگر او اشتباه كرده باشد و اين مورد امكان پذير باشد.چنين سيستمي كه قادر به استارت سريع يك همجوشي هسته اي باشد بسيار مفيد فايده خواهد بود.

    در حال حاضر Ken Suslick تمايل دارد كه سيستمهاي mechanoluminescence را كه در آزمايشگاه خود به روي آنها كار كرده است را مجددا مورد برسي قرار دهد.در اين حينEscobar و همكارانش قصد دارند تا آزمايش خود را با ساير انواع چسبها انجام دهند و اثرات مشابه احتمالي را بررسي كنند.

    ولي مهمترين چالش پيش روي آنها اين است كه در يابند.اين پديده حقيقتا به چه دليلي روي مي دهد؟

    Escobar مي گويد : "كه اين مسئله در راس اولويتهاي آنها قرار دارد."


    93365739541900062743
    profilephpid100002248043280

    22771097565880345367
    facebook

    23759482593804762228
    NewGame7191

  9. #9
    مدير باز نشسته
    تاریخ عضویت
    Jan 1970
    محل سکونت
    Tabriz
    نوشته ها
    5,550
    تشکر تشکر کرده 
    7,087
    تشکر تشکر شده 
    8,503
    تشکر شده در
    2,353 پست
    قدرت امتیاز دهی
    1938
    Array

    پیش فرض

    نور و آينه ها

    نور صورتي از انرژي تابشي است كه با سرعت 300000 كيلومتر بر ثانيه درفضا سير مي كند.

    فرايند نور:
    1- موجب ديدن اجسام مي شود.
    2- موجب عمل غذاسازي گياهان مي شود.
    3- باعث كاركردن كليه وسايل نوري مي شود.

    4- موجب تغيير رنگ لباس و پارچه مي شود.

    براي آنكه جسمي ديده شود، بايد از آن جسم نور به چشم برسد، بنابر اين جسم يا بايد از خودش نور تابش كند و يا نورهايي را كه برآن تابيده شده است، به طرف چشم بيننده بازتاب دهد.
    به همين دليل اجسام به دو دسته تقسيم مي شوند.
    1- اجسام منير يا چشمه ي نور: اجسامي كه از خود نور توليد مي كنند. مانند خورشيد، لامپ روشن، شمع روشن، چوب در حال سوختن
    2- اجسام غير منير: اين اجسام از خود نوري تابش نمي كنند، بلكه نوري را كه از چشمه هاي نور به آن ها تابيده است به طرف چشم، باز مي گردانند، در نتيجه ما مي توانيم آن ها را ببينيم.

    انواع چشمه ي نور:
    1- چشمه ي گسترده نور: يك شي نوراني نظير خورشيد، چراغ روشن، شعله ي شمع را چشمه ي نور گسترده مي ناميم.


    2- چشمه نور نقطه اي: اگر صفحه اي از مقوا را كه روي آن روزنه ي كوچكي ايجاد شده است، درمقابل چراغ روشني قراردهيم، نور چراغ پس از گذشتن از روزنه منتشر مي شود و روزنه مانند يك چشمه نور كوچك عمل مي كند كه به آن چشمه ي نقطه اي نور مي گويند.

    تقسيم بندي اجسام غير منير از نظر عبور نور از آنها:
    1- اجسام شفاف : اجسامي كه نور از آن ها عبور مي كند مانند شيشه – هوا – آب

    2- اجسام نيمه شفاف : اجسامي كه نور از آن ها عبور مي كند ولي از پشت آن ها اجسام ديگر به طور واضح ديده نمي شوند. مانند شيشه هاي مات – كاغذ كالك
    3- اجسام كدر اجسامي كه نور از آن ها عبور نمي كند.مانند آجر-مقوا-چوب و ....

    نور به خط راست منتشر مي شود.
    چند دليل مهم براي اثبات اين موضوع:
    1- عبور نور از لابه لاي شاخ و برگ درختان
    2- تشكيل سايه
    3- خورشيد گرفتگي
    4- ماه گرفتگي

    سايه چگونه تشكيل مي شود؟ اگر جسم كدري در مقابل منبع نوري قرار گيرد در پشت جسم محوطه ي تاريكي بوجود مي آيد كه به آن سايه مي گويند.

    راههاي تشكيل سايه :
    1- تشكيل سايه به وسيله چشمه ي نقطه اي نور: در اين حالت فقط سايه كامل ايجاد مي شود و مرز مشخصي بين تاريكي و روشنايي وجود دارد.
    نكته: قطر سايه به فاصله ي چشمه ي نور تا جسم كدر و پرده بستگي دارد.
    نكته: هر گاه چشمه ي نور به جسم كدر نزديك شود قطر سايه بزرگتر مي شود و هرگاه چشمه ي نور را از جسم كدر دور كنيم قطر سايه كوچك تر مي شود.

    2- تشكيل سايه به وسيله چشمه ي گسترده نور: در اين حالت علاوه بر سايه كامل، نيم سايه نيز ديده مي شود.
    - خورشيد گرفتگي (كسوف): هر گاه در چرخش ماه به دور زمين و هر دو به دور خورشيد، مركز آن سه (ماه،زمين،خورشيد) روي يك خط راست واقع شود به طوري كه ماه در وسط باشد، ماه جلوي نور خورشيد را مي گيرد و سايه آن روي زمين مي افتد در نتيجه كساني كه در سايه ي ماه قرار دارند خورشيد را تاريك مي بينند. در اين صورت مي گوييم، خورشيد گرفتگي رخ داده است.
    - ماه گرفتگي: اگر زمين بين ماه و خورشيد قرار گيرد، زمين جلوي نور خورشيد را مي گيرد و سايه آن روي ماه مي افتد و آن را تاريك مي كند. در اين صورت مي گوييم ماه گرفتگي رخ داده است.

    بازتاب نور : برگشت نور از سطح يك جسم را بازتاب مي گويند.
    انواع بازتاب نور:
    1- بازتاب منظم: اين بازتابش در سطوح بسيار صاف صورت مي گيرد. در اين صورت پرتوهاي نور به طور موازي به سطح تابيده و به طور موازي در يك جهت بازتاب مي شوند. در اين نوع بازتاب همواره تصويري واضح و روشن ايجاد مي شود. مانند آينه

    2- بازتاب نامنظم: هرگاه يك دسته پرتو موازي نور به سطح ناهمواري برخورد كند به صورت پرتوهاي غير موازي و در جهات متفاوت بازتاب مي شوند. دراين نوع بازتابش تصوير اشياء مبهم و نامشخص است.

    اصل انعكاس: در بازتاب نور از سطح يك جسم، همواره زاويه تابش و بازتاب برابرند.

    نكته 1: پرتو تابش: پرتو نوري كه به سطح مي تابد.(I)
    نكته2: پرتو بازتابش: پرتو بازگشته از سطح را مي گويند.(R)
    نكته3: زاويه تابش: زاويه بين پرتو تابش و خط عمود را مي گويند.(i)
    نكته4: زاويه بازتابش: زاويه بين پرتو بازتاب و خط عمود را گويند.(r)
    نكته5: زاويه آلفا α : زاويه بين پرتو تابش و سطح آينه را گويند.
    نكته6: زاويه بتا α : زوايه بين پرتو بازتاب و سطح آينه را گويند.
    نكته7: زاويه تابش متمم زاويه α است.
    نكته8: زاويه باز تابش متمم زاويه β است.

    انواع دسته اشعه (پرتو) نوراني:
    1- دسته پرتو موازي: اين پرتوها همانطور كه از اسمشان پيدا است با هم موازي هستند.

    2- دسته پرتو همگرا: پرتوهايي هستند كه در آن شعاع هاي نور در جهت انتشار به هم نزديك مي شوند و در يك نقطه به هم مي رسند.

    3- دسته پرتو واگرا: پرتوهايي كه در آن شعاع هاي نور در جهت انتشار از هم دور مي شوند.

    پرتوهاي حقيقي:
    پرتوهاي تابش و بازتابش كه به چشم مي رسند را پرتوهاي حقيقي مي گويند.
    پرتوهاي مجازي:
    امتداد پرتوهاي واگرايي كه از سطح آينه بازتاب مي شوند(در پشت آينه) پرتوهاي مجازي گفته مي شود.
    تصوير حقيقي:
    زماني تشكيل مي شود كه پرتوهاي تابش شده از يك نقطه شي پس از برخورد به آينه يا عدسي در نقطه اي ديگر به هم برسند. تصوير حقيقي بر روي پرده تشكيل مي شود.

    تصوير مجازي:
    تصويري كه پرتوهاي مجازي در پشت آينه به وجود مي آورند را مي گويند.تصوير مجازي بر روي پرده تشكيل نمي شود.

    آينه:
    قطعات شيشه اي كه پشت آنها نقره اندود يا جيوه اندود شده است و مي توانند نور را بازتاب دهند بازتاب از سطح آينه منظم است.

    ويژگي هاي تصوير در آينه تخت
    1- تصوير مجازي
    2- تصوير مستقيم
    3- تصوير برگردان(وارون جانبي)
    4- طول تصوير با طول جسم برابر است.
    5- فاصله تصوير تا آينه با فاصله ي جسم تا آينه برابر است.

    كاربرد آينه ي تخت:
    1- استفاده از تصوير مستقيم آن در خانه و وسايل نقليه
    2- استفاده از آينه براي ارسال علايم مخابراتي به فاصله دور
    3- استفاده از آينه ي تخت براي اندازه گيري سرعت نور و وسايل نور بازتابي (تلسكوپ بازتابي)
    4- پريسكوپ: اين دستگاه از لوله اي تشكيل شده كه در دو طرف آن دو آينه ي تخت موازي نصب شده كه هر يك از اين آينه ها با محور آينه زوايه 45 درجه مي سازد. هر تصويري كه در يكي از اين آينه ها ديده مي شود در ديگري نيز مشاهده مي شود.

    انتقال آينه ي تخت:
    هرگاه جسمي در برابر آينه ي تختي قرار گيرد، تصوير مجازي آن در آينه ديده مي شود. چنانچه آينه به اندازه d جابه جا شود. تصوير به اندازه 2d نسبت به جسم جابه جا مي شود.

    اگر آينه ثابت باشد و جسم به اندازه d نسبت به آينه جا به جا شود تصوير نسبت به جسم به اندازه d جا به جا مي شود.
    سرعت انتقال تصوير:
    سرعت انتقال تصوير در آينه ي تخت در حالتي كه آينه ثابت باشد و جسم با سرعت V در راستاي عمود بر سطح آينه حركت كند، نسبت به مكان اوليه اش برابر V است.
    در حالي كه جسم ساكن باشد و آينه در راستاي عمود بر سطح آينه با سرعت V حركت كند، سرعت انتقال تصوير در آينه نسبت به مكان اوليه اش برابر 2V خواهد بود.
    در حالي كه جسم و آينه هر يك با سرعت V به طرف هم حركت كنند، سرعت انتقال تصوير در آينه نسبت به مكان اوليه اش برابر 3Vخواهد بود.
    تصوير در آينه هاي متقاطع:
    هر گاه جسم روشني در فضاي بين دو آينه ي متقاطع قرار گيرد پرتوهايي از جسم به هر يك از دو آينه مي تابد و دو تصوير مجازي به وجود مي آورد. اگر پرتوها پس از باز تابش هاي متوالي به آينه برخورد كنند تصويرهاي ديگري نمايان مي شود. هر چه زاويه بين دوآينه α كوچكتر باشد تعداد اين تصويرها بيش تر است.

    نكته: در حالتي كه دو آينه موازي باشند 0=α تعداد تصاوير بي نهايت زياد است.

    آينه هاي كروي:
    الف) آينه مقعر(كاو): اگر سطح داخلي آينه بازتاب كننده باشد، به آن آينه كاو مي گويند.
    نكته 1: اگر يك دسته پرتو نور موازي به آينه كاو بتابد پرتوهاي بازتابيده در يك نقطه به نام كانون حقيقي به هم مي رسند.
    كانون با حرف F نمايش داده مي شود.
    به فاصله كانون تا آينه، فاصله كانوني مي گويند و با حرف f نمايش مي دهند.

    نكته2: آينه هاي كاو مي توانند از يك جسم هم تصوير مجازي و هم تصوير حقيقي ايجاد كنند.
    تشكيل تصوير حقيقي يا مجازي، بستگي به فاصله جسم از آينه هاي كاو دارد. هر چه جسم به آينه نزديك تر باشد، تصوير در فاصله اي دورتر ايجاد مي شود و هرچه جسم را از آينه دور كنيم تصوير به آينه نزديك تر مي شود.

    ب) آينه ي كوژ: اگر سطح خارجي آينه بازتاب كننده باشد، آن را آينه ي كوژ مي گويند.
    نكته1: هرگاه پرتوهاي نور موازي محور اصلي به آينه محدب بتابد، طوري باز مي تابد كه امتداد پرتوهاي بازتاب از يك نقطه روي محور اصلي مي گذرند. اين نقطه را كانون اصلي آينه ي محدب مي نامند. كانون آينه محدب مجازي است.

    نكته 2: تصوير در آينه ي محدب همواره مجازي، كوچك تر از جسم و مستقيم خواهد بود.

    شكست نور:
    وقتي نور به جسمي مي تابد، مقداري از آن نور بازتاب مي شود، مقداري نيز از جسم عبور مي كند،
    اما جسم هاي شفاف مانند هوا، آب، شيشه، طلق هاي پلاستيكي شفاف نور را به خوبي از خود عبور مي دهند.

    نور در يك محيط معين در مسير مستقيم حركت مي كند.
    اگر در مسير نور يك قطعه جسم شفاف عمود در مسير نور قرار گيرد، مسير نور در هنگام عبور از جسم هم چنان مستقيم خواهد بود.

    اما اگر نور در مسير خود، با زوايه اي ديگر به يك جسم شفاف (مثلا شيشه) برخورد كند، هنگام ورود به شيشه مسير حركتش مقداري كج مي شود. به اين پديده شكست نور مي گويند.

    نور در يك محيط معين، به صورت مستقيم و با سرعت ثابت حركت مي كند، هرگاه محيط تغيير كند، سرعت نور نيز تغيير كرده و نور منحرف مي شود و در مسير جديد به خط راست حركت مي كند.
    تغيير مسير پرتو نور به هنگام عبور از يك محيط شفاف به محيط شفاف ديگر را شكست نور مي گويند.
    زاويه تابش: زاويه اي بين پرتو تابش و خط عمود (i)
    زاويه شكست: زاويه اي بين پرتو شكست و خط عمود (r)
    رابطه ي زاويه تابش و زاويه ي شكست:
    1- اگر پرتو تابش عمود بر سطح مشترك بين دو محيط باشد،(يعني زاويه آن با خط عمود برابر صفر باشد) در اين صورت نور بدون شكست وارد محيط دوم شده و منحرف نمي شود.

    2- اگر پرتو تابش از محيط رقيق وارد محيط غليظ شود در اين حالت پرتو شكست به خط عمود نزديك مي شود يعني زاويه شكست از زاويه ي تابش كوچك تر مي شود.

    3- اگر پرتو تابش از محيط غليظ وارد محيط رقيق شود، در اين حالت پرتو شكست از خط عمود دورتر مي شود و زاويه ي شكست از زاويه ي تابش بزرگ تر مي شود.

    علت شكست نور:
    علت شكست نور، متفاوت بودن سرعت نور در محيط هاي مختلف است. سرعت نور در خلا يا هوا در حدود است اما وقتيكه وارد آب مي شود، سرعت آن به حدود كيلومتر بر ثانيه مي رسد. سرعت نور در شيشه(كه غليظ تر از آب است) كم تر و در حدود است. اين تفاوت سرعت نور سبب مي شود كه راستاي پرتوهاي نور هنگام عبور از يك محيط به محيط ديگر، شكسته شود و پديده شكست نور اتفاق بيفتد.

    عمق ظاهري، عمق واقعي:
    هنگامي كه از هوا به جسمي در داخل آب نگاه كنيم آن جسم به سطح آب نزديكتر و وقتي از داخل آب به جسمي در هوا نگاه كنيم، دورتر به نظر مي رسد. وقتي نور به طور مايل از يك محيط شفاف وارد محيط شفاف ديگر مي شود، در مرز مشترك دو محيط، تغيير مي دهد(شكسته مي شود) همين عامل سبب بالاتر ديده شدن جسم نسبت به سطح واقعي گردد.

    منشور:
    قطعه اي مثلثي شكل است كه از يك ماده شفاف مثل شيشه يا پلاستيك هاي بي رنگ ساخته مي شود. وقتي پرتوهاي نور به يكي از ديواره هاي منشور برخورد مي كند و به آن وارد مي شود، در اثر پديده ي شكست مسيرش تغيير مي كند. اين پرتو هنگام خروج از ديواره ي ديگر منشور نيز، دچار تغيير مي شود.

    آزمايش نيوتن:
    هرگاه شعاع نور سفيدي بر يك وجه منشور شيشه اي كه قاعده ي آن به شكل مثلث است بتابانيم، نور سفيد تجزيه شده و پرتوهاي خروجي از منشور بر روي پرده طيف رنگيني از هفت رنگ قرمز، نارنجي، زرد، سبز، آبي، نيلي و بنفش را تشكيل مي دهد. علت اين پديده آن است كه ميزان شكست نورهاي رنگي مختلف، با هم يكسان نيست. هرگاه نور سفيد وارد منشور شود، تغيير مسير رنگ هاي تشكيل دهنده ي نور سفيد از قرمز تا بنفش بيش تر شده و به هنگام خروج از منشور رنگ هاي مختلف نور سفيد از يكديگر جدا مي شوند.
    جداسازي رنگ هاي نور سفيد به وسيله ي منشور را پاشيدگي نور (پاشيده شدن) مي گويند.

    به مجموعه نورهاي رنگي كه از پاشيده شدن نور در منشور به وجود مي آيد طيف نور گفته مي شود.
    عدسي ها:
    اگر دو منشور را مطابق شكل هاي مقابل به هم بچسبانيم و سطح آن ها را به صورت خميده تراش دهيم، عدسي به وجود مي آيد.

    عدسي ها مانند منشور مي تواند جهت پرتوهاي نور را تغيير دهد، همين امر سبب مي شود اجسام از پشت عدسي به صورتهاي مختلف ديده شوند.

    انواع عدسي:
    1- عدسي همگرا(محدب يا كوژ) ضخامت وسط اين عدسي بيش تر از ضخامت كناره هاي آن است.
    اين نوع عدسي پرتوهاي نور موازي را شكسته و در يك نقطه متمركز مي كند يا به عبارت ديگر پرتوهاي نور را به يكديگر نزديك مي كند.
    2- عدسي واگرا (مقعر يا كاو) ضخامت وسط اين عدسي كم تر از ضخامت كناره هاي آن است.
    اين نوع عدسي پرتوهاي نور موازي را شكسته و آنها را واگرا مي نمايد به عبارت ديگر پرتوهاي نور را از يكديگر دور مي كند.

    عدسي همگرا:

    اين نقطه كانون عدسي(ذره بين)است. اگر فاصله ي بين عدسي تا صفحه ي كاغذ را اندازه بگيريد، اين فاصله را فاصله كانوني عدسي گويند.
    هرگاه يك دسته پرتو نور موازي با محور اصلي به عدسي همگرا بتابد پس از عبور از عدسي شكسته شده و پرتوها در يك نقطه يكديگر را قطع مي كنند. اين نقطه كانون اصلي عدسي بوده و با F نمايش داده مي شود.

    فاصله ي بين كانون و مركز نوري عدسي را فاصله ي كانوني عدسي مي گويند و با علامت (f) نمايش مي دهند.
    نكته: عدسي هاي همگرا هم تصوير حقيقي و هم تصوير مجازي ايجاد مي كنند.
    ويژگي هاي تصوير در عدسي همگرا بستگي به فاصله شي از عدسي و فاصله ي كانوني دارد.
    عدسي واگرا:
    هر گاه پرتوهايي موازي محور اصلي به عدسي واگرا بتابد پس از شكست و عبور از عدسي طوري از هم دور مي شوند كه امتداد آن ها از يك نقطه روي محور اصلي بگذرند. اين نقطه را كانون عدسي واگرا مي نامند.
    نكته: عدسي ها واگرا همواره تصويري مجازي، مستقيم، كوچك تر از جسم و نزديك تر(در همان طرف شي) ايجاد مي كند.


    93365739541900062743
    profilephpid100002248043280

    22771097565880345367
    facebook

    23759482593804762228
    NewGame7191

  10. #10
    مدير باز نشسته
    تاریخ عضویت
    Jan 1970
    محل سکونت
    Tabriz
    نوشته ها
    5,550
    تشکر تشکر کرده 
    7,087
    تشکر تشکر شده 
    8,503
    تشکر شده در
    2,353 پست
    قدرت امتیاز دهی
    1938
    Array

    پیش فرض

    محققان دانشگاه ايالتي اوهايو به راهكاري جديد براي غلبه بر يكي از موانع بزرگ در دانش فيزيك دست يافتند.
    به گزارش سرويس «علمي» خبرگزاري دانشجويان ايران (ايسنا)، پژوهشگران تاكيد كردند با كشف جديد، در نهايت امكان توليد ابررساناها در دماي بالا و نيز ابداع مواد جديد در بخش فن‌آوري برتر فراهم خواهد شد.
    در سال 2008 آژانس پروژه‌هاي تحقيق پيشرفته دفاعي سه تيم دانشگاهي مختلف را انتخاب كرد تا با يك چالش بزرگ در عرصه فيزيك مقابله كنند.
    اين چالش به دام انداختن اتم‌ها در درون يك بلور نوري بود كه مي‌توان با حل آن مواد نامتعارف و كمياب را شبيه سازي كرده و به سوالاتي اساسي در دانش فيزيك پاسخ داد.
    اين گروه‌هاي پژوهشي تا پايان اولين فرصت نهايي نتوانستند اتمها را به حد كافي سرد كنند كه براي آزمايشاتشان قابل استفاده شوند.
    در يك فيزيكدان دانشگاه اوهايو به نام يتن ــ لون مو و دانشجوي وي موفق شدند راه حلي بالقوه براي اين چالش ارائه كنند.
    شرح دستاورد آنها در نشريه پيشرفت‌هاي آكادمي ملي علوم آمريكا به چاپ رسيده است.
    نتايج مطالعات اين دو فيزيكدان نشان مي‌دهد كه فشرده كردن اتم‌ها در يك بلور نوري تا زماني كه حرارت از آن خارج شود، امكان پذير است.
    در اين شرايط يك اتمسفر ميعان فوق‌العاده سرد بوز ـ اينشتن اطراف اين بلور را احاطه مي‌كند تا گرماي حاصل از آن را جذب كرده و آن را بخار كند.
    محققان تاكيد كردند: اين تكنيك نخستين طرح پيشنهادي براي توليد بلورهاي نوري است.


    93365739541900062743
    profilephpid100002248043280

    22771097565880345367
    facebook

    23759482593804762228
    NewGame7191

صفحه 1 از 2 12 آخرینآخرین

برچسب ها برای این تاپیک

علاقه مندی ها (بوک مارک ها)

علاقه مندی ها (بوک مارک ها)

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست در پست خود ضمیمه کنید
  • شما نمیتوانید پست های خود را ویرایش کنید
  •  

http://www.worldup.ir/