ترانزیستور را معمولاً به عنوان یکی از قطعات الکترونیک میشناسند. ترانزیستور یکی از ادوات حالت جامد است که از مواد نیمه رسانایی مانند سیلیسیم و ژرمانیوم ساخته میشود.یک ترانزیستور در ساختار خود دارای پیوندهایپیوند نوع N و پیوند نوع P میباشد.
معرفی
ترانزیستورهای جدیBJTد به دو دسته کلی تقسیم میشوند: ترانزیستورهای اتصال دوقطبی(s) و ترانزیستورهای اثر میدانیTs. اعمال جریان در BJTها و ولتاژ در FETها بیین ورودی وترمینال مشترک رسانایی بین خروجی و ترمینال مشترک را افزایش میدهد، از اینرو سبب کنترل جریان بین آنها میشود. مشخصات ترانزیستورها به نوع آن بستگی دارد. مدلهای ترانزیستور را ببینید. لغت "ترانزیستور" به نوع اتصال نقطهای آن اشاره دارد، اما انی سمبل قدیمی با سمبل هایی را کردند که اختلاف ساختار ترانزیستور دوقطبی را به صورت دقیقتر نشان میداد، اما این ایده خیلی زود رها شد. در مدارات آنالوگ، ترانزیستورها در تقویت کنندهها استفاده میشوند، (تقویت کنندههای جریان مستقیم، تقویت کنندههای صدا، تقویت کنندههای امواج رادیویی) و منابع تغذیه تنظیم شده خطی. همچنین از ترانزیستورها در مدارات دیجیتال بعنوان یک سوئیچ الکترونیکی استفاده میشوند، اما به ندرت به صورت یک قطعه جدا، بلکه به صورت بهم پیوسته در مدارات مجتمع یکپارچه بکار میروند. مدارات دیجیتال شامل گیتهای منطقی، حافظه با دسترسی تصادفی (RAM)، میکروپروسسورها و پردازندههای سیگنال دیجیتال (DSPs) هستند. ترانزیستور میتواند به انوان سویچ نیز کار کند.ترانزستور که سه بایه دارد بخواهد بعنوان تقویت
ساختمان ترانزیستور [ویرایش]
BJT از اتصال سه لایه بلور نیمه هادی تشکیل می شود. لایه وسطی بیس(base)، و دو لایه جانبی، یکی امیتر(emitter) و دیگری کلکتور(collector) نام دارد .نوع بلور بیس، با نوع بلورهای امیتر و کلکتور متفاوت است.[۱]
اهمیت
ترانزیستور از سوی بسیاری بعنوان یکی از بزرگترین اختراعات در تاریخ نوین مطرح شده است، در رتبه بندی از لحاظ اهمیت در کنار ماشین چاپ، خودرو و ارتباطات الکترونیکی و الکتریکی قرار دارد. ترانزیستور عنصر فعال کلیدی در الکترونیک مدرن است. اهمیت ترانزیستور در جامعه امروز متکی به قابلیت آن برای تولید انبوه که از یک فرآیند (ساخت) کاملاً اتماتیک که قیمت تمام شده هر ترانزیستور در آن بسیار ناچیز است استفاده میکند. اگرچه ملیونها ترانزیستور هنوز تکی (به صورت جداگانه) استفاده میشوند ولی اکثریت آنها به صورت مدار مجتمع (اغلب به صورت مختصر IC و همچنین میکرو چیپ یا به صورت ساده چیپ نامیده میشوند) همراه با دیودها، مقاومت ها، خازنها و دیگر قطعات الکترونیکی برای ساخت یک مدار کامل الکترونیک ساخته میشوند.یک گیت منطقی حاوی حدود بیست ترانزیستور است در مقابل یک ریزپردازنده پیشرفته سال 2006 که میتواند از بیش از 7/1 ملیون ترانزیستور استفاده کند (ماسفت ها)[1]. قیمت کم، انعطاف پذیری و اطمینان از ترانزیستور یک قطعه همه کاره برای وظایف غیرمکانیکی مثل محاسبه دیجیتال ساخته است. مدارات ترانزیستوری به خوبی جایگزین دستگاههای کنترل ادوات و ماشینها شده اند. استفاده از یک میکروکنترلر استاندارد و نوشتن یک برنامه رایانهای که عمل کنترل را انجام میدهد اغلب ارزان تر و موثرتر از طراحی معادل مکانیکی آن میباشد. بعلت قیمت کم ترانزیستورها و ازاینرو رایانهها گرایشی برای دیجیتال کردن اطلاعات وجود دارد. با رایانههای دیجیتالی که توانایی جستوجوی سریع، دسته بندی و پردازش اطلاعات دیجیتال را ارائه میکنند، تلاش بیشتری برای دیجیتال کردن اطلاعات شده است.در نتیجه امروزه دادههای رسانه ای بیشتری به دیجیتال تبدیل میشوند، در پایان توسط رایانه تبدیل شده و به صورت آنالوگ در اختیار قرار میگیرد. تلوزیون، رادیو و روزتامهها چیزهایی هستند که تحت تاثیر این انقلاب دیجیتال واقع شده اند.
مزایای ترانزیستورها بر لامپهای خلإ [ویرایش]
قبل از گسترش ترانزیستورها، لامپهای خلإ (یا در UK لاپهای ترمیونیک یا فقط لامپ ها) قطعات فعال اصلی تجهیزات الکترونیک بودند. مزایای کلیدی که به ترانزیستورها اجازه جایگزینی با لامپهای خلإ سابق در بیشتر کاربردها را داد در زیر آمده است: اندازه کوچک تر (با وجود ادامه کوچک سازی لامپهای خلإ) تولید کاملاً اتوماتیک هزینه کمتر (در حجم تولید) امکان ولتاژ کاری پایین تر ( اما لامپهای خلإ در ولتاژهای بالاتر میتوانند کار کنند) نداشتن دوره گرم شدن (بیشتر لامپهای خلإ به 10 تا 60 ثانیه زمان برای عملکرد صحیح نیاز دارند) تلفات توان کمتر (نداشتن توان گرمایی، ولتاژ اشباع خیلی پایین) قابلیت اطمینان بالاتر و سختی فیزیکی بیشتر( اگرچه لامپهای خلإ از نظر الکتریکی مقاوم ترند. همچنین لامپ خلإ در برابر پالسهای الکترومغناطیسی هستهای (NEMP) وتخلیه الکترو استاتیکی (ESD) مقاوم ترند عمر خیلی بیشتر (قطب منفی لامپ خلإ سرانجام ازبین میرود و خلإ آن میتواند آلوده بشود) فراهم آوردن دستگاههای مکمل (امکان ساختن مدارات مکمل متقارن: لامپ خلإ قطبی معادل نوع مثبت BJTها و نوع مثبت FETها در دسترس نیست) قابلیت کنترل جریان بالا (ترانزیستورهای قدرت بریای کنترل صدها آمپر در دسترسند، لامپهای خلإ برای کنترل حتی یک آمپر بسیار بزرگ و هزینه برند) میکروفونیک بسیار کمتر (لرزش میتواند با خصوصیات لامپ خلإ تلفیق شود، به هر حال این ممکن است در صدای تقویت کنندههای گیتار شرکت کند)
تاریخچه
اولین سه حق ثبت اختراع ترانزیستور اثرمیدان در سال 1928 در آلمان توسط فیزک دانی به نامJulius Edgar Lilienfeld ثبت شد، اما او هیچ مقالهای در باره قطعه اش چاپ نکرد و این سه ثبت اختراع از طرف صنعت نادیده گرفته شد. در سال 1934 فیزیکدان آلمانی دکتر Oskar Heil ترانزیستور اثر میدان دیگری را به ثبت رساند. هیچ مدرک مستقیمی وجود ندارد که این قطعه ساخته شده است، اما بعداً کارهایی در دهه 1990 نشان داد که یکی از طرحهای Lilienfeld کار کرده و گین قابل توجهای داده است. اوراق قانونی از آزمایشگاههای ثبت اختراع بل نشان میدهد که Shockley و Pearson یک نسخه قابل استفاده از اختراع Lilienfeld ساخته اند، در حالی که آنها هیچگاه این را در تحقیقات و مقالات خود ذکر نکردند. ترانزیستورهای دیگر، R. G. Arns در 23 دسامبر 1947 Wiliam Shockley, John Bardan و Walter Brattain موفق به ساخت اولین ترانزیستور اتصال نقطهای در آزمایشگاه بل شدند. این کار با تلاشهای زمان جنگ برای تولید دیودهای مخلوط کننده ژرمانیم خالص "کریستال" ادامه یافت، این دیودها در واحدهای رادار بعنوان عنصر میکسر فرکانس در گیرندههای میکروموج استفاده میشد. یک پروژه موازی دیودهای ژرمانیم در دانشگاه Purdue موفق شد کریستالهای نیمه هادی ژرمانیم را با کیفیت خوب که در آزمایشگاههای بل استفاده میشد را تولید کند.[2] سرعت سوئیچ تکنولوژی لامپی اولیه برای این کار کافی نبود، همین تیم Bell را سوق داد تا از دیودهای حالت جامد به جای آن استفاده کنند. آنها با دانشی که در دست داشتند شروع به طراحی سه قطبی نیمه هادی کردند، اما دریافتند که کار سادهای نیست. Bardeen سرانجام یک شاخه جدید فیزیک سطحی را برای محاسبه رفتار عجیبی که دیده بودند ایجاد کرد و سرانجام Brattain و Bardeen موفق به ساخت یک قطعه کاری شدند. آزمایشگاههای تلفن بل به یک اسم کلی برای اختراع جدید نیاز داشتند: "سه قطبی نیمه هادی"، "سه قطبی جامد"، "سه قطبی اجزاء سطحی"، "سه قطبی کریستال" و "لاتاتورن" که همه مطرح شده بودند، اما "ترانزیستور" که توسط John R. Pierce ابداع شده بود، برنده یک قرعه کشی داخلی شد. اساس وبنیاد این اسم در یاداشت فنی بعدی شرکت رای گیری شد: ترانزیستور، این یک ترکیب مختصر از کلمات "ترانسکانداکتانس" یا "انتقال" و "مقاومت متغیر" است. این قطعه منطقاً متعلق به خانواده مقاومت متغیر میباشد و یک امپدانس انتقال یا گین دارد بنابراین این اسم یک ترکیب توصیفی است. -آزمایشگاههای تلفن بل- یاداشت فنی(28 می 1948) Pierce این نام را قدری متفاوت تفسیر کرد: دلیلی که من این نام را انتخاب کردم این بود که من فکر کردم این قطعه چکار میکند، در آن زمان تصور میشد که این قطعه مثل دو لامپ خلإ است. لامپهای خلإ هدایت انتقالی دارند بنابراین ترانزیستور مقاومت انتقالی دارد. و این اسم می بایست متناسب با نام دیگر قطعات مثل وریستور، ترمیستور باشد. و من اسم ترانزیستور را پیشنهاد کردم. PBC Show مصاحبه با john R. Pierce بل فوراً ترانزیستور تک اتصالی را جزء تولیدات انحصاری شرکت Western Electric، شهر Allentown در ایالت Pennsylvania قرار داد. نخستین ترانزیستورهای گیرندههای رادیو AM در معرض نمایش قرار گرفتند، اما در واقع فقط در سطح آزمایشگاهی بودند.بهرحال در سال 1950 Shockley یک نوع کاملاً متفاوت ترانزیستور را ارائه داد که به ترانزیستور اتصال دوقطبی معروف شد. اگرچه اصول کاری این قطعه با ترانزیستور تک اتصالی کاملاً فرق میکند، قطعهای است که امروزه به عنوان ترانزیستور شناخته میشود. پروانه تولید این قطعه نیز به تعدادی از شرکتهای الکترونیک شامل Texas Instrument که تعداد محدودی رادیو ترانزیستوری بعنوان ابزار فروش تولید میکرد داده شد. ترانزیستورهای اولیه از نظر شیمیایی ناپایدار بودند و فقط برای کاربردهای فرکانس و توان پایین مناسب بودند، اما همینکه طراحی ترانزیستور توسعه یافت این مشکلات نیز کم کم رفع شدند. اگرچه اغلب نادرست به Sony نسبت داده میشود، ولی اولین رادیو ترانزیستوری تجاری Regency TR-1 بود که توسط Regency Division از I.D.E.A (گروه مهنسی توصعه صنعتی) شهر Indianapolis ایالت Indiana ساخته شده و در 18 اکتبر 1954 اعلام شد. آین رادیو در نوامبر 1954 به قیمت 95/49 دلار(معادل با 361 دلار در سال 2005) به فروش گذاشته شد و تعداد 150000 از آن به فروش رفت. این رادیو از 4 ترانزیستور استفاده میکرد وبا یک باتری 5/22 ولتی راه اندازی میشد. هنگامیکه Masaru Ibuka، موسس شرکت ژاپنی سونی از آمریکا دیدن میکرد آزمایشگاههای بل ارائه مجوز ساخت شامل ریز دستوراتی مبنی بر چگونگی ساخت ترانزیستور را اعلام کرده بودند. Ibuka مجوز خرید 50000 دلاری پروانه تولید را از وزیر دارایی ژاپن گرفت و در سال 1955 رادیوی جیبی خود را تحت مارک سونی معرفی کرد. (کلمه جیبی اشاره دارد به مطلب بدنامی سونی وقتیکه فروشنده آنها پیراهن مخصوصی با جیبهای بزرگ داشت). این محصول بزودی با طرحهای بلند پروازانه ادامه پیدا کرد، اما آنها بعنوان آغاز رشد شرکت سونی از طرف عموم مورد توجه قرار میگرفتند تا سونی به یک قدرت تولیدی تبدیل شد. بعد از دو دهه ترانزیستورها بتدریج جای لامپهای خلإ را در بسیاری از کاربردها گرفتند و بعدها امکان تولید دستگاههای جدیدی از قبیل مدارات مجتمع و رایانههای شخصی را فراهم آوردند. از Shockley, Bardeen و Brattian بخاطر تحقیقاتشان در مورد نیمه هادیها وکشف اثر ترانزیستر با جایزه نوبل فیزیک قدردانی شد. Bardeen میرفت که دومین جایزه نوبل فیزیک را دریافت کند، یکی از دو نفری که بیش از یک جایزه از یک متد میگرفت. اولین ترانزیستور Gallium-Arsenide Schottky-gate توسط Carver Mead ساخته و در سال 1966 گزارش داده شد.
کاربرد
ترانزیستور دارای 3 ناحیه کاری میباشد.ناحیه قطع/ناحیه فعال(کاری یا خطی)/ناحیه اشباع ناحیه قطع حالتی است که ترانزیستور در ان ناحیه فعالیت خاصی انجام نمیدهد.اگر ولتاژ بیس را افزایش دهیم ترانزیستور از حالت قطع بیرون امده و به ناحیه فعال وارد میشود در حالت فعال ترانزیستور مثل یک عنصر تقریبا خطی عمل میکند اگر ولتاژ بیس را همچنان افزایش دهیم به ناحیهای میرسیم که با افزایش جریان ورودی در بیس دیگر شاهد افزایش جریان بین کلکتور و امیتر نخواهیم بود به این حالت میگویند حالت اشباع و اگر جریان ورودی به بیس زیاد تر شود امکان سوختن ترانزیستور وجود دارد. ترانزیستور هم در مدارات الکترونیک آنالوگ و هم در مدارات الکترونیک دیجیتال کاربردهای بسیار وسیعی دارد. درمدارات آنالوگ ترانزیستور در حالت فعال کار میکند و میتوان از آن به عنوان تقویت کننده یا تنظیم کننده ولتاژ (رگولاتور) و ... استفاده کرد. و در مدارات دیجیتال ترانزیستور در دو ناحیه قطع و اشباع فعالیت میکند که میتوان از این حالت ترانزیستور در پیاده سازی مدار منطقی، حافظه، سوئیچ کردن و ... استفاده کرد.به جرات میتوان گفت که ترانزیستور قلب تپنده الکترونیک است.
عملکرد
ترانزیستور از دیدگاه مداری یک عنصر سهپایه میباشد که با اعمال یک سیگنال به یکی از پایههای آن میزان جریان عبور کننده از دو پایه دیگر آن را میتوان تنظیم کرد. برای عملکرد صحیح ترانزیستور در مدار باید توسط المانهای دیگر مانند مقاومتها و ... جریانها و ولتاژهای لازم را برای آن فراهم کرد و یا اصطلاحاً آن را بایاس کرد.
انواع
دو دسته مهم از ترانزیستورها BJT (ترانزیستور دوقطبی پیوندی) (Bypolar Junction Transistors) و FET (ترانزیستور اثر میدان) (Field Effect Transistors) هستند. ترانزیستورهای اثزمیدان یا FETها نیز خود به دو دستهٔ ترانزیستور اثر میدان پیوندی(JFET) و MOSFETها (Metal Oxide SemiConductor Field Effect Transistor) تقسیم میشوند.
ترانزیستور دوقطبی پیوندی [ویرایش]
در ترانزیستور دو قطبی پیوندی با اعمال یک جریان به پایه بیس جریان عبوری از دو پایه کلکتور و امیتر کنترل میشود. ترانزیستورهای دوقطبی پیوندی در دونوع npn و pnp ساخته میشوند. بسته به حالت بایاس این ترانزیستورها ممکن است در ناحیه قطع، فعال و یا اشباع کار کنند. سرعت بالای این ترانزیستورها و بعضی قابلیتهای دیگر باعث شده که هنوز هم از آنها در بعضی مدارات خاص استفاده شود. امروزه بجای استفاده از مقاومت وخازن و...در مدارات مجتمع تمامآازترانزیستوراستفاده میکنند
ترانزیستور اثر میدان پیوندی(JFET) [ویرایش]
در ترانزیستورهای JFET(Junction Field Effect Transistors( در اثر میدان، با اعمال یک ولتاژ به پایه گیت میزان جریان عبوری از دو پایه سورس و درین کنترل میشود. ترانزیستور اثر میدانی بر دو قسم است: نوع n یا N-Type و نوع p یا P-Type. از دیدگاهی دیگر این ترانزیستورها در دو نوع افزایشی و تخلیهای ساخته میشوند.نواحی کار این ترانزستورها شامل "فعال" و "اشباع" و "ترایود" است این ترانزیستورها تقریباً هیچ استفادهای ندارند چون جریان دهی آنها محدود است و به سختی مجتمع میشوند.
انواع ترانزیستور پیوندی
pnp
شامل سه لایه نیم هادی که دو لایه کناری از نوع p و لایه میانی از نوع n است و مزیت اصلی آن در تشریح عملکرد ترانزیستور این است که جهت جاری شدن حفرهها با جهت جریان یکی است.
npn
شامل سه لایه نیم هادی که دو لایه کناری از نوع n و لایه میانی از نوع p است. پس از درک ایدههای اساسی برای قطعهٔ pnp میتوان به سادگی آنها را به ترانزیستور پرکاربردتر npn مربوط ساخت.
ساختمان ترانزیستور پیوندی ترانزیستور دارای دو پیوندگاه است. یکی بین امیتر و بیس و دیگری بین بیس و کلکتور. به همین دلیل ترانزیستور شبیه دو دیود است. دیود سمت چپ را دیود بیس _ امیتر یا صرفاً دیود امیتر و دیود سمت راست را دیود کلکتور _ بیس یا دیود کلکتور مینامیم. میزان ناخالصی ناحیه وسط به مراتب کمتر از دو ناحیه جانبی است. این کاهش ناخالصی باعث کم شدن هدایت و بالعکس باعث زیاد شدن مقاومت این ناحیه میگردد.
امیتر که به شدت آلائیده شده، نقش گسیل و یا تزریق الکترون به درون بیس را به عهده دارد. بیس بسیار نازک ساخته شده و آلایش آن ضعیف است و لذا بیشتر الکترونهای تزریق شده از امیتر را به کلکتور عبور میدهد. میزان آلایش کلکتور کمتر از میزان آلایش شدید امیتر و بیشتر از آلایش ضعیف بیس است و کلکتور الکترونها را از بیس جمعآوری میکند.
بازسازی اولین ترانزیستور جهان
طرز کار ترانزیستور پیوندی طرز کار ترانزیستور را با استفاده از نوع npn مورد بررسی قرار میدهیم. طرز کار pnp هم دقیقا مشابه npn خواهد بود، به شرط اینکه الکترونها و حفرهها با یکدیگر عوض شوند. در نوع npn به علت تغذیه مستقیم دیود امیتر ناحیه تهی کم عرض میشود، در نتیجه حاملهای اکثریت یعنی الکترونها از ماده n به ماده p هجوم میآورند. حال اگر دیود بیس _ کلکتور را به حالت معکوس تغذیه نمائیم، دیود کلکتور به علت بایاس معکوس عریضتر میشود.
الکترونهای جاری شده به ناحیه p در دو جهت جاری میشوند، بخشی از آنها از پیوندگاه کلکتور عبور کرده، به ناحیه کلکتور میرسند و تعدادی از آنها با حفرههای بیس بازترکیب شده و به عنوان الکترونهای ظرفیت به سوی پایه خارجی بیس روانه میشوند، این مولفه بسیار کوچک است.
شیوهٔ اتصال ترازیستورها
اتصال بیس مشترک در این اتصال پایه بیس بین هر دو بخش ورودی و خروجی مدار مشترک است. جهتهای انتخابی برای جریان شاخهها جهت قراردادی جریان در همان جهت حفرهها میشود.
اتصال امیتر مشترک مدار امیتر مشترک بیشتر از سایر روشها در مدارهای الکترونیکی کاربرد دارد و مداری است که در آن امیتر بین بیس و کلکتور مشترک است. این مدار دارای امپدانس ورودی کم بوده، ولی امپدانس خروجی مدار بالا میباشد.
اتصال کلکتور مشترک اتصال کلکتور مشترک برای تطبیق امپدانس در مدار بکار میرود، زیرا برعکس حالت قبلی دارای امپدانس ورودی زیاد و امپدانس خروجی پائین است. اتصال کلکتور مشترک غالبا به همراه مقاومتی بین امیتر و زمین به نام مقاومت بار بسته میشود.
نویسنده :فرهاد وحدانی، با تحقیق از حمیدرضا مروج
ترانزیستور اثر میدان MOS [ویرایش]
این ترانزیستورها نیز مانند Jfetها عمل میکنند با این تفاوت که جریان ورودی گیت آنها صفر است. همچنین رابطه جریان با ولتاژ نیز متفاوت است. این ترانزیستورها دارای دو نوع PMOS و NMOS هستند که فناوری استفاده از دو نوع آن در یک مدار تکنولوژی CMOS نام دارد. این ترانزیستورها امروزه بسیار کاربرد دارند زیرا براحتی مجتمع میشوند و فضای کمتری اشغال میکنند. همچنین مصرف توان بسیار ناچیزی دارند.
به تکنولوژیهایی که از دو نوع ترانزیستورهای دوقطبی و Mosfet در آن واحد استفاده میکنند Bicmos میگویند.
البته نقطه کار این ترانزیستورها نسبت به دما حساس است وتغییر میکند. بنابراین بیشتر در سوئیچینگ بکار میروند AMB
ساختار و طرز کار ترانزیستور اثر میدانی - فت
ترانزیستور اثر میدانی ( فت ) - FET همانگونه که از نام این المام مشخص است، پایه کنترلی آن جریانی مصرف نمیکند و تنها با اعامل ولتاژ و ایجاد میدان درون نیمه هادی، جریان عبوری از FET کنترل میشود. به همین دلیل ورودی این مدار هیچ کونه اثر بارگذاری بر روی طبقات تقویت قبلی نمی گذارد و امپدانس بسیار بالایی دارد.
فت دارای سه پایه با نهامهای درِین D - سورس S و گیت G است که پایه گیت، جریان عبوری از درین به سورس را کنترل می نماید. فتها دارای دو نوع N کانال و P کانال هستند. در فت نوع N کانال زمانی که گیت نسبت به سورس مثبت باشد جریان از درین به سورس عبور میکند . FETها معمولاً بسیار حساس بوده و حتی با الکتریسیته ساکن بدن نیز تحریک میگردند. به همین دلیل نسبت به نویز بسیار حساس هستند.
نوع دیگر ترانزیستورهای اثر میدانی MOSFETها هستند ( ترانزیستور اثر میدانی اکسید فلزی نیمه هادی - Metal-Oxide Semiconductor Field Efect Transistor ) یکی از اساسیترین مزیتهای ماسفتها نویز کمتر آنها در مدار است.
فتها در ساخت فرستنده باند اف ام رادیو نیز کاربرد فراوانی دارند. برای تست کردن فت کانال N با مالتی متر، نخست پایه گیت را پیدا می کنیم. یعنی پایهای که نسبت به دو پایه دیگر در یک جهت مقداری رسانایی دارد و در جهت دیگر مقاومت آن بی نهایت است. معمولاً مقاومت بین پایه درین و گیت از مقاومت پایه درین و سورس بیشتر است که از این طریق میتوان پایه درین را از سورس تشخیص داد.
علاقه مندی ها (بوک مارک ها)