در اين مقاله بصورت خلاصه در مورد آناليز و خواص سراميک هاي پيزوالکتريک توضيح مي دهيم. تمرکز ما بر روي سراميک هاي پلي کريستال است، بنابراين سراميک هاي تک کريستال، مواد پليمري، کامپوزيت هاي آلي / غيرآلي (organic / inorganic composites) جزء اهداف مورد بررسي در اين مقاله نمي باشد. براي فهميدن کامل رفتار سراميک هاي پلي کريستال پيزوالکتريک، مطالعه ي اطلاعات پايه در زمينه ي سراميک ها ضروري مي باشد.
براي همين مسأله ما مقدمه اي کوتاه در مورد تاريخچه ي پيزوالکتريسيته و مباحث مربوط به کارهاي انجام شده بر روي سراميک ها و پيشرفت هاي مربوط به رابطه ي ساختار و رفتار مواد پيزوالکتريک به شما ارائه مي دهيم. ما کوشش مي کنيم ما متداول ترين روش هاي اندازه گيري را به خوبي توضيح دهيم و پارامترهاي موثر به خواص پيزوالکتريک ها را توضيح مي دهيم. براي بدست آوردن اطلاعات بيشتر به منابع موجود در پايان مقاله مراجعه کنيد. براي توضيح بهتر، ما از مثال (PZT) lead zirconate titanate استفاده مي کنيم. زيرا اين سراميک بيشترين استفاده را داشته و مطالعات زيادي بر روي آن صورت گرفته است.
مواد پيزوالکتريک
تاريخچه و کارهاي انجام شده در اين زمينه
مواد هوشمند، موادي هستند که متحمل فعل و انفعالات فيزيکي مي شوند. يک تعريف معادل ديگر از مواد هوشمند اين است که اين مواد،موادي هستند که تغييرات محيطي را دريافت کرده و با استفاده از بازخوردهاي سيستم، اين تغييرات را حذف يا تصحيح مي کنند. مواد پيزوالکتريک، آلياژهاي حافظه دار (shape-memory alloys)، مواد الکتروستريک (materials electrostrictive)، مواد تغيير شکل دهنده در اثر مغناطيس (magnetrostrictivematerials)، مايع هاي با خواص الکترورئولوژي (electrorheological fluids)، نمونه هايي از مواد هوشمند متداول هستند.
تعريف و تاريخچه
پيزوالکتريسيته يک متغير خطي است که به ساختار ميکروسکوپي جامدات مربوط مي شود. برخي از سراميک ها هنگامي که تحت تأثير فشار قرار گيرند پلاريزه مي شوند. اين پديده ي خطي و آشکار به عنوان اثر پيزوالکتريک مستقيم (The direct Piezoelectric effect) نسبت داده مي شود. اثر پيزوالکتريک مستقيم هميشه با اثر پيزوالکتريک معکوس، همراه است. که اين اثر پيزوالکتريک معکوس زماني اتفاق مي افتد که يک قطعه ي پيزوالکتريک در يک ميدان الکتريکي قرار گيرد.
نواحي ميکروسکوپ بوجود آمده در اثر پيزوالکتريسيته باعث جابجا شدن بارهاي يوني در داخل ساختار کريستالي مي شود. در غياب نيروهاي فشاري خارجي، اين بارها در داخل کريستال توزيع شده و ممنتم دي پل ها همديگر را خنثي مي کنند. به هرحال، هنگامي که يک تنش خارجي بر قطعه ي پيزوالکتريک وارد شود، بارها به گونه اي جابجا گشته که تقارن دي پل ها از ميان مي رود. بر اين اساس يک شبکه ي پلاريزه ايجاد شده و نتيجه ي آن ايجاد يک ميدان الکتريکي است.
ماده اي مي تواند از خود خواص پيزوالکتريک ارائه دهد که سلول واحد آن هيچگونه مرکز تعادلي نداشته باشد. خاصيت پيزوالکتريسيته به گروهي از مواد تعلق دارد که در سال 1880 به وسيله پيروژاکوپ کوري در طي مطالعات آنها بر روي آثار فشار بر روي توليد بار الکتريکي در کريستال هاي کوارتز، کهربا و نمک راچل (Rochelle salt)، کشف شد. در سال 1881 واژه ي Piezoelectricity توسط w.Hankel براي اولين بار براي نامگذاري اين اثرات پيشنهاد شد. البته اثر معکوس اين خاصيت توسط Lipmann از قوانين ترموديناميک استنباط شد. در سه دهه ي بعد، همکاري هاي فراواني در انجمن هاي علمي اروپا در زمينه ي پيزو الکتريسيته انجام شد واژه ي ميدان پيزو الکتريسيته بوسيله آنها استفاده شد. البته کارهاي انجام شده بر روي رابطه ي ميان الکترومکانيکي مختلط با کريستال هاي پيزوالکتريک در سال 1910 انجام شد و اطلاعات آن به صورت يک مرجع استاندارد است.
به هرحال پيچيدگي علم مربوط به مواد پيزوالکتريک باعث شد که کاربردهاي اين مواد تا چند سال قبل رشد پيدا نکند. لانگوين ات آل در طي جنگ جهاني اول مبدل التراسونيک پيزو الکتريکي ساخت. موفقيت او باعث ايجاد موقعيت هاي استفاده از مواد پيزوالکتريک در کاربردهاي زير آبي شد. در سال 1935، Scherrer , Busch خاصيت پيزوالکتريک پتاسيم دي هيدروژن فسفات (KDP) را کشف کردند. خانواده ي پيزوالکتريک هاي پتاسيم دي هيدروژن فسفات اولين خانواده ي عمده از مواد پيزوالکتريک و فرو الکتريک بود که کشف شده بود.
در طي جنگ جهاني دوم، تحقيقات در زمينه ي مواد پيزوالکتريک بوسيله ي آمريکا، شوروي سابق و ژاپن بسط داده شد. محدوديت هاي ساخت اين مواد از تجاري شدن آنها جلوگيري مي کرد اما اين مسأله نيز پس از کشف باريم تيتانات و سرب زيرکونا تيتانات (PZT) در دهه هاي 1940، 1950 برطرف شد. اين خانواده از مواد خاصيت دي الکتريک و پيزوالکتريک بسيار خوبي داشتند علاوه بر اين خانواده قابليت مناسب شدن و استفاده در کاربردهاي خاص را بواسطه ي دپ کردن آنها با عناصر ديگر، دارند. تا اين تاريخ، PZT يکي از مواد پيزوالکتريک پر کاربرد است. اين نکته قابل توجه است که بيشترين سراميک هاي پيزوالکتريک تجاري در دسترس (مانند باريم تيتانات و PZT) ساختاري شبيه به ساختار پرسکيت (Perovskite) با فرمول CaTiO3 دارند.
ساختار پرسکيت (ABD3) ساده ترين آرايش اتمي است که در آن اتم هاي اکسيژن در حالت اکتاهدرال قرار دارند و اتم هاي کوچکتر (Nb, Sn, Zr, Ti و ... ) به صورت آرايش مربعي با اتم هاي اکسيژن پيوند خورده اند اين کاتيون هاي کوچکتر فضاهاي اکتاهدرال مرکزي را اشغال کرده اند (موقعيت هاي B) و کاتيون هاي بزرگتر (Na, Ca, Sr, Ba, Pb و...) در گوشه هاي سلول واحد جاي مي گيرد (موقعيت هاي A )، ترکيباتي مانند
KNbO3, NaNbO3, PbZro3, PbTiO3, BaTiO3 مورد مطالعه قرار گرفته و طول و دماي فروالکتريکي آنها و فازهاي غير فروالکتريک شان به صورت وسيع استخراج شده است. اين ساختارها همچنين بوسيله ي اتم هاي مختلف جانشين شده تغيير مي کند. اين جانشيني هاي اتمي اتفاق افتاده موجب توليد ترکيبات پيچيده تري مانند
(Pb, Sr) (Zr, Ti) O3 , (Ba, Sr) TiO3 ، (k, Bi) TiO3, Pb(fe, Ta) O3 و ... مي شود.
تقريباًٌ در سال 1965 بود که چندين شرکت ژاپني بر روي توليد فرآيندها و کاربردهاي جديد وسايل پيزوالکتريکي، متمرکز شوند. موفقيت تلاش محققين ژاپني موجب شد تا محققين ديگر کشورها نيز به سمت تحقيقات در اين زمينه جذب شوند و امروزه، نيازها و استفاده ها از اين مواد در بسياري از رشته ها از جمله کاربردهاي پزشکي، ارتباطات، کاربردهاي نظامي و صنعت خودرو گسترش يافته است. بررسي تاريخچه ي پيزوالکتريسيته توسط W.G.Cady انجام شده است و در سال 1971 نيز کتابي با عنوان سراميک هاي پيزوالکتريک منتشر شد. که اين کتاب هنوز هم به عنوان يکي از منابع قوي در زمينه ي پيزوالکتريک ها مطرح است.
علاقه مندی ها (بوک مارک ها)