Volume I consists of four chapters. The first chapter gives a brief overview of the field of digital signal processing.This is followed by a chapter detailing many useful signals and concepts, including convolution, recursion, difference equations, etc. The third chapter covers conversion from the continuous to discrete domain and back (i.e., analog-to-digital and digital-to-analog conversion), aliasing, the Nyquist rate, normalized frequency, conversion fromone sample rate to another, waveform generation at various sample rates from stored wave data, and Mu-law compression. The fourth and final chapter of the present volume introduces the reader to many important principles of signal processing, including correlation, the correlation sequence, the Real DFT, correlation by convolution, matched filtering, simple FIR filters , and simple IIR filters. Volume II of the series is devoted to discrete frequency transforms. It begins with an overview of a number of well-known continuous domain and discrete domain transforms, and covers the DTFT (Discrete Time Fourier Transform), the DFT (Discrete Fourier Transform), and the z-Transform in detail. Filter realizations (or topologies) are also covered, including Direct, Cascade, Parallel, and Lattice forms. Volume III of the series covers FIR and IIR design, including general principles of FIR design, the effects of windowing and filter length, characteristics of four types of linear-phase FIR, Comb and MAfilters,Windowed Ideal Lowpass filter design,Frequency Sampling design with optimized transition band coefficients, Equiripple FIR design, and Classical IIR design. Volume IV of the series, LMS Adaptive Filtering, begins by explaining cost functions and performance surfaces, followed by the use of gradient search techniques using coefficient perturbation, finally reaching the elegant and computationally efficient Least Mean Square (LMS) coefficient update algorithm. The issues of stability, convergence speed, and narrow-bandwidth signals are covered in a practical manner, with many illustrative scripts. In the second chapter of the volume, use of LMS adaptive filtering in various filtering applications and topologies is explored, including Active Noise Cancellation (ANC),system or plant modeling, periodic component elimination,Adaptive Line Enhancement (ADE), interference cancellation, echo cancellation, and equalization/deconvolution.
ORIGIN AND EVOLUTION OFTHE SERIES
The manuscript from which the present series of four books has been made began with an idea to provide a basic course for intellectual property specialists and ngineers that would provide more explanation and illustration of the subject matter than that found in conventional academic books.The idea to provide an accessible basic course in digital signal processing began in the mid-to-late 1990’s when I was introduced to MATLAB by Dan Hunter, whose graduate school days occurred after the advent of both MATLAB and LabVIEW (mine did not). About the time I was seriously exploring the use of MATLAB to update my own knowledge of signal processing,Dr. Jeffrey Gluck began giving an in-house course at the agency on the topics of convolutional coding, trellis coding, etc., thus inspiring me to do likewise in the basics of DSP, a topic more in-tune to the needs of the unit I was supervising at the time.Two short courses were taught at the agency in 1999 and 2000 by myself and several others, including Dr. Hal Zintel, David Knepper, andDr.Pinchus Laufer. In these courses we stressed audio and speech topics in addition to basic signal processing concepts. Some time after this, I decided to develop a complete course in book form, the previous courses having consisted of an ad hoc pastiche of topics presented in summary form on slides, augmented with visual presentations generated by custom-written scripts for MATLAB. An early draft of the book was kindly reviewed by Motorola Patent Attorney Sylvia Y. Chen, which ncouraged me to contact Tom Robbins at Prentice-Hall concerning possible publication. By 2005, Tom was involved in starting a publishing operation at National Instruments, Inc., and introduced me to LabVIEW with the idea of possibly crafting the book to be compatible with LabVIEW. After review of an existing draft of the anuscript by a panel of three in early 2006, it was suggested that all essential foundation mathematics be included if academic as well as professional appeal was wanted. Fortunately, I had long since retired from the agency and was able to devote the considerable amount of time needed for such a project. The result is a book that should have appeal in both academic and professional settings, as it includes essential mathematical formulas and concepts as well as simple or “first principle” explanations that help give the reader a gentler entry into the mathematical treatment. This double-pronged approach to the subject matter has, of course, resulted in a book of onsiderable length.Accordingly, it has been broken into four modules or volumes (described above) that together form a comprehensive course, but which may be used individually by readers who are not in need of a complete course. Many thanks go not only to all those mentioned above, but to Joel Claypool of Morgan&Claypool, Dr. C. L.Tondo and his troops, and, no doubt, many others behind the scenes whose names I have never heard, for making possible the publication of this series of books. ForesterW. Isen
November 2008
علاقه مندی ها (بوک مارک ها)