همه چی در مورد ام آ ای....
آنژیوگرافی
برخلاف تکنیک های تصویربرداری CT، دیده شدن خون جاری در MRI وابسته به عوامل زیادی است. خون در MRI هم به صورت تیره و هم به صورت روشن دیده می شود. عوامل سرعت، توالی پالس، انتخاب زمانهای TR و TE، ضخامت مقطع و ...، بر فرایند دیه شدن خون تاثیر دارند.
انواع حرکت و جریان
ماهیت جریان یکنواخت در یک لوله با معادله رینولدر بیان می شود. عدد رینولدز یک کمیت عددی بدون واحد است که از رابطه زیر به دست می آید:
ویستکوزیته)/ چگالی×سرعت×دانسیته Re= (
جریان لامینار: این نوع جریان در رگهای معمولی دیده می شود و پروفیل آن شلجمی است.
جریان پلاگ: این جریان جریان ایده ال است بطوریکه سرعت در راستای مجرا ثابت است و در نتیجه پروفیل سرعت کاملا صاف خواهد بود.
جریان اغتشاشی: این پدیده در رگهای غیر عادی مشاهده می شود (یعنی بعد از گرفتگی) یا در پیوستن دو شاخه زمانی که یک حرکت تصادفی از مواد مایع مشاهده می شود.
دیده شدن نرمال خون در MRI:
دیده شدن خون جاری در رگ را می توان در دو بخش سیگنال ضعیف (black blood) و سیگنال قوی(white blood) طبقه بندی کرد. دیده شدن خون به هر یک از دو حالت فوق تابع سه عامل مستقل از هم است. به این ترتیب که سه عامل سرعت زیاد، جریانهای اغتشاشی و ناهمفازی اسپین ها ایجاد کننده سیگنال ضعیف و سه عامل بازهمفازی اکوی زوج، هم زمانی دیاستولی و درخشش جریانی(FRE) ایجاد کننده سیگنال قوی است.
سیگنال ضعیف:
سرعت زیاد
در توالی پالس اسپین اکو، پروتن ها باید در معرض یک پالس RF 180 و 90 قرار بگیرند تا یک سیگنال بدهند. کاهش سیگنال با سرعت بالا با زمان پرواز TOF هنگامی اتفاق می افتد که پروتنهای در حال جریان به مدت کافی درون برش انتخاب شده باقی نمانند تا هر دو پالس RF را دریافت کنند. هرچه سرعت بیشتر باشد سیگنال کمتر می شود.
جریان اغتشاشی
در جریان اغتشاشی جریانهای تصادفی با مولفه های سرعت مختلف وجود دارند. در نتیجه هر یک از این مولفه ها، دارای فاز متفاوتی هستند که باعث فرونشاندن یکدیگر شده و در نتیجه هیچ سیگنالی ساخته نمی شود(حذف جریان). این اتفاق برای جریان با سرعت کم یا زیاد اتفاق می افتد.
غیرهمفازی
دلایل بسیاری برای غیر همفازی وجود دارد. یکی از مهمترین دلایل غیر همفازی، غیرهمفازی اکوی فرد نامیده می شود.
فعالیت گرادیان های تصویربرداری در هنگام جمع آوری سیگنال موجب می شود که سنگنالها شناخته شوند. این وضعیت برای پروتن های ساکن صادق است، ولی چنانچه موقعیت پروتن های متحرک در هنگام فعالیت گرادیانهای تغییر نماید، در آن صورت پروتن های متحرک نسبت به پروتن های ساکن دچار تغییر فاز شده و افزایش یا کاهش فاز می یابند که به اثر اسپین-فاز مشهور است.
فرکانس رزونانس این پروتن های متحرک از رابطه زیر بدست می آید:
. G. V. t ɣ = ω
چون ω فرکانس زاویه ای است که تغییرات فاز Φ را نسبت به زمان t نشان می دهد، پس تغییر فاز Φ می توان چنین حساب کرد:
½ ɣ G V t2 = Φ
این رابطه نشان می دهد که تعییر فاز پروتن های متحرک متناسب با سرعت، شدت گرادیان و مجذور زمان فعالیت گرادیان است و تغییر هر یک به طور مستقیم، تغییر فاز پروتن ها را به دنبال دارد. بر این اساس ورود جریان لایه ای به یک میدان مغناطیسی گرادیانی منجر به ناهمفازی پروتن ها و از دست رفتن سیگنال در اولین اکو همه اکوهای فرد در یک آرایه چند اکویی می گردد. ناهمفازی هنگامی رخ می دهد که پروتن های موجود در یک وکسل با سرعتی مساوی از میدان مغناطیسی گرادیانی عبور نمی کنند و در نتیجه با فرکانس های مختلف نوسان نموده و در فازهای مختلف قرار می گیرند.
سیگنال قوی
بازهمفازی اکوی زوج
در سکانسهای اسپین اکو و با انتخاب اکوهای متقارن چندتایی مثل 30، 60 ، 90، 120، مشاهده می شود که وقتی خون جاری با سرعت ثابت حرکت می کند، در اکوهای زوج مثل 60 و 120 پراکنش فازی کمتر و به عبارت دیگر افزایش سیگنال بیشتری نسبت به اکوهای فرد مثل 30 و 90 ایجاد می گردد. این افزایش سیگنال خون جاری در اکوهای زوج دوم و چهارم به بازهمفازی اکوی زوج موسوم است و کاهش سیگنال خون در اکوهای فرد اول و سوم، ناهمفازی اکوی فرد نامیده می شود که گرادیان فرکانس موجب بروز چنین رخدادی در نمایش خون در اکوها می گردد.
همزمانی دیاستولی
در طی یک دوره ضربان قلب، جریان در طول انقباض قلب سریعتر و در حین انبساط قلب کندتر است. بنابراین، در هنگام انبساط قلب، سیگنال داخل عروقی قویتری مشاهده می شود. هنگامی که از همزمان کردن تصویربداری با ضربان قلب استفاده می شود، هر برش از یک نقطه ثابت در دوره ضربان قلب بدست می آید.
درخشش جریانی (FRE)
این پدیده اغلب مربوط به اولین برش می باشد که جریان خون وارد آن می گردد. به همین خاطر FRE پدیده ورودی نیز نامیده می شود. FRE نوعی اثر TOF است که جریان خون تازه ای که وارد اولین برش می شود کاملا اشباع نشده است و بنابراین مغناطش کامل بدست می آورد. درحالیکه بافت ثابت مجاور آن بخاطر پالسهای RF قبلی تا اندازه ای اشباع شده است.
تصویربرداری اکو صفحه ای (epi):
تصویربرداری اکو صفحه ای (EPI):
در این بخش می خواهیم در مورد EPI سریعترین تکنیک موجود در MRI صحبت کنیم.
برخلاف دیگر تکنیکهای اسکن گیری سریع که از طریق نرم افزار موجود می تواند بدست آید، EPI تک مرحله ای نیازمند تطبیق سخت افزاری است. خصوصا گرادیانهای با قابلیت با که نیازمند خاموش و روشن سریع گرادیان هستند مورد نیاز است.
انواع EPI:
دو نوع EPI وجود دارد: EPI تک مرحله ای و EPI چند مرحله ای.
در EPI تک مرحله ای تمام خطوط در فضای k به وسیله چندین گرادیان معکوس پر م.ی شوند و اکوهای چند گرادیانی در یک مرحله جمع آوری سیگنال بعد از یک تک پالس RF یعنی در یک اندازه گیری یا تک مرحله تولید می شود. برای انجام داد این روش، گرادیان قرائت باید سریعا از بیشترین مقدار مثبت به بیشترین مقدار منفی معکوس شود. هر قطعه از گرادیان قرائت مربوط به خط Ky مجزا در فضای k است که در بالا یا زیر خط پایه پر می شود.
در روش قبلی گرادیان کدگذاری فاز به طور پیوسته بود. در نتیجه ناحیه تحت پوشش فضای k به صورت زیگ زاگ بود. که این امر باعث یروز آرتبفکت در تبدیل فوریه در مقایسه با فضای K روتین می شود. برای حل این مشکل گرادیان کد گذاری فاز وقتی که گرادیان قرائت صفر باشد اعمال می شود یعنی وقتی که موقعیت فضای k در انتهای دیگر محور kx است. این تکنیک EPI پالسی نامیده می شود.
EPI چند مرحله ای:
در EPI چند مرحله ای، قرائت به چند مرحله یا قطعه تقسیم می شود. چون فضایk به چندین مرحله جمع آوری دیتا قطعه قطعه شده است، این تکنیک نیز EPI قطعه ای نامیده می شود.
مزایای EPI چند مرحله ای :
این تکنیک در مقایسه با EPI تک مرحله ای فشار کمتری روی گرادیانها ایجاد می کند.
در مقایسه با EPI تک مرحله ای زمان کمتری برای خطای فاز وجود دارد، لذا آرتیفکت قابلیت پذیرفتاری مواد دیامگنتیک کاهش می یابد.
معایب EPI چند مرحله ای :
EPI چند مرحله ای طولانی تر ای EPI تک مرحله ای است.
EPI چند مرحله ای بیشتر مستعد بروز آرتیفکت حرکتی است.
برخلاف اسپین اکوی معمولی که اطلاعات نمنه برداری در مدت یک گرادیان قرائت ثابت انجام می شود، در تکنیک های EPI تک مرحله ای نمونه برداری در طی گرادیان قرائت تناوبی با قطعات مثبت و منفی انجام می گیرد که موجب کامل شدن فضای k به صورت سینوسی یا زیگ زاگ شدن قرائت می شود. در مورد EPI پالسی خط سیر داخل برای اکوهای فرد است. در EPI چند مرحله ای جمع آوری اطلاعات در چندین قطعه به روش میان گذاری انجام می شود.
توالی پالس (Pulse sequence )
توالی پالس، مجموعه ای از پالس های RF است که در طی مطالعه MR بصورت تکراری اعمال می شود و پارامترهای زمان TE و TR در آن بکار می رود. این توالی به یک نمودار زمانی یا یک نمودار توالی پالسی وابسته است.
میدانیم که دو دلیل برای ناهمفاز شدن وجود دارد:
1- غیریکنواختی میدان مغناطیسی خارجی
2- تاثیر متقابل اسپین- اسپین
توالی پالسی اسپین اکو با یک پالس RF 180، غیر یکنواختی میدان مغناطیسی خارجی را از طریق همفاز کردن و متمرکز کردن اسپینها حذف می کند. اگر چه با استفاده از توالی پالس اکو می توان ناهمفازی ناشی از غیر یکنواختی های ثابت میدان مغناطیسی خارجی را حذف نمود ولی برهمکنش های اسپین-اسپین را نمی توان حذف کرد زیرا ثابت نیستند و بطور تصادفی نوسان می کنند.
توالی پالس
دیاگرام پالس اسپین-اکو:
بردار مغناطش طولی بر اثر پالس 90به صفحه x-y منحرف می شود. سه بردار مغناطش متفاوت در حال چرخش در صفحه عرضی را در نظر بگیرید. هر یک از این سه بردار در محیط مغناطیسی اندکی متفاوت از همدیگر قرار گرفته اند. در ابتدا هر سه با هم همفازند و با فرکانس زاویه ای اولیه می چرخند. در شکل می بینید یک گروه از اسپینها را می بینیم که در معرض میدان مغناطیسی اولیه قرار دارند و این باعث می شود تا با فرکانس لارمور بچرخند. گروه اسپینهای مجاور در معرض میدان مغناطیسی اندکی بزرگتر قرار دارند و با فرکانس اندکی بزرگتر می چرخند. گروه بعدی در معرض میدان مغناطیسی اندکی کوچکتر هستند و فرکانس چرخش آنها کوچکتر است. بعد از پالس 90 اسپینها شروع به ناهمفاز شدن نسبت به یکدیگر می کنند. سرانجام بردار سریع و بردار کند، 180 تغییر فاز داده و یکدیگر را حذف می کنند.
ولی متوان در یک زمان مشخص Ƭ بعد از پالس 90 وقتی اسپینها ناهمفاز شدند، یک پالس 180 اعمال می شود. حال همه اسپینها 180در صفحه x-y منحرف شده و به چرخش خود ادامه می دهند؛ اما در جهت مخالف. ما یک پالس RF180 اعمال می کنیم. سپس یک زمان طولانی TR صبر می کنیم می بینیم که FID بر اثر T2* خیلی سریع ناهمفاز می شود. T2* با عیر یکنواختی میدان مغناطیسی خارجی و برهمکنش اسپین-اسپین ارتباط دارد. بعد از زمان Ƭ پالس متمرکز کننده 180 را اعمال می کنیم. بعد از زمان مساویƬآنها دوباره کاملا" همفاز شده و سیگنال به بیشترین مقدار می رسد. پس هدف از پالس 180 حذف تاثیرات ناهمفازی ناشی از غیر یکنواختی میدان مغناطیسی خارجی است. این کار با دوباره همفاز شدن اسپینها در زمان اکو TE انجام می شود.
1- زمان Ƭ زمان بین پالس 90 و پالس 180 است.
2- زمان Ƭ همچنین زمان بین پالس RF 180 و نقطه ای است که دوباره همفاز شدن اسپینها به حداکثر می رسد یعنی اکو.
3- Ƭ2 را زمان تاخیر اکو یا TE می نامیم. TE مدت زمان بعد از پالس 90 است که دوباره بیشترین سیگنال را داریم.
4- پالس 180 را پالس دوباره متمرکز کننده یا دوباره همفاز کننده refocusingمی نامیم.
البته می توان یک پالس 180 دیگر را به این توالی اضافه کنیم. و در این زمان به جای یک پالس 180 ، پالس 180 بعد از پالس 90 خواهیم داشت.
کنتراست بافت در اسپین اکو به طور عمده وابسته به TR و TE است. سه نوع کنتراست بافت وجود دارد:
T1W،T2W و PDW.
http://www.prin.ir/cache/multithumb_..._images_ir.gif