توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : آموزش شبكه هاي بي سيم - Wireless Network
Mohamad
02-21-2010, 01:48 PM
آموزش شبكه هاي بي سيم - Wireless Network >فصل اول
مقدمه
از آنجا که شبکههای بی سیم، در دنیای کنونی هرچه بیشتر در حال گسترش هستند، و با توجه به ماهیت این دسته از شبکهها، که بر اساس سیگنالهای رادیوییاند، مهمترین نکته در راه استفاده از این تکنولوژی، آگاهی از نقاط قوت و ضعف آنست. نظر به لزوم آگاهی از خطرات استفاده از این شبکهها، با وجود امکانات نهفته در آنها که بهمدد پیکربندی صحیح میتوان بهسطح قابل قبولی از بعد امنیتی دست یافت، بنا داریم در این سری از مقالات با عنوان «امنیت در شبکه های بی سیم» ضمن معرفی این شبکهها با تأکید بر ابعاد امنیتی آنها، به روشهای پیکربندی صحیح که احتمال رخداد حملات را کاهش میدهند بپردازیم
............................................
استاندارد شبکه های محلی بی سیم
در ماه ژوئن سال 1997 انجمن مهندسان برق و الكترونيك (IEEE) استاندارد IEEE 802.11-1997 را به عنوان اولين استانداردِ شبكههای محلی بیسيم منتشر ساخت. اين استاندارد در سال 1999 مجدداً بازنگری شد و نگارش روز آمد شده آن تحت عنوان IEEE 802.11-1999 منتشر شد. استاندارد جاری شبكههای محلی بیسيم يا همانIEEE 802.11 تحت عنوان ISO/IEC 8802-11:1999، توسط سازمان استاندارد سازی بينالمللی (ISO) و مؤسسه استانداردهای ملی آمريكا (ANSI) پذيرفته شده است. تكميل اين استاندارد در سال 1997، شكل گيری و پيدايش شبكه سازی محلی بیسيم و مبتنی بر استاندارد را به دنبال داشت. استاندارد 1997، پهنای باند 2Mbps را تعريف میكند با اين ويژگی كه در شرايط نامساعد و محيطهای دارای اغتشاش (نويز) اين پهنای باند میتواند به مقدار 1Mbps كاهش يابد. روش تلفيق يا مدولاسيون در اين پهنای باند روش DSSS است. بر اساس اين استاندارد پهنای باند 1 Mbps با استفاده از روش مدولاسيون FHSS نيز قابل دستيابی است و در محيطهای عاری از اغتشاش (نويز) پهنای باند 2 Mbpsنيز قابل استفاده است. هر دو روش مدولاسيون در محدوده باند راديويی 2.4 GHz عمل میكنند. يكی از نكات جالب توجه در خصوص اين استاندارد استفاده از رسانه مادون قرمز علاوه بر مدولاسيونهای راديويی DSSS و FHSS به عنوان رسانهانتقال است. ولی كاربرد اين رسانه با توجه به محدوديت حوزه عملياتی آن نسبتاً محدود و نادر است. گروه كاری 802.11 به زير گروههای متعددی تقسيم میشود. شكلهای 1-1 و 1-2 گروههای كاری فعال در فرآيند استاندارد سازی را نشان میدهد. برخی از مهمترين زير گروهها به قرار زير است:
كميته 802.11e كميتهای است كه سعی دارد قابليت QoS اِتـِرنت را در محيط شبكههای بیسيم ارائه كند. توجه داشته باشيد كه فعاليتهای اين گروه تمام گونههای 802.11 شامل a، b، و g را در بر دارد. اين كميته در نظر دارد كه ارتباط كيفيت سرويس سيمی يا Ethernet QoS را به دنيای بیسيم بياورد.
كميته 802.11g كميتهای است كه با عنوان 802.11 توسعه يافته نيز شناخته میشود. اين كميته در نظر دارد نرخ ارسال دادهها در باند فركانسی ISM را افزايش دهد. باند فركانسی ISM يا باند فركانسی صنعتی، پژوهشی، و پزشكی، يك باند فركانسی بدون مجوز است. استفاده از اين باند فركانسی كه در محدوده 2400 مگاهرتز تا 2483.5 مگاهرتز قرار دارد، بر اساس مقررات FCC در كاربردهای تشعشع راديويی نيازی به مجوز ندارد. استاندارد 802.11g تا كنون نهايی نشده است و مهمترين علت آن رقابت شديد ميان تكنيكهای مدولاسيون است. اعضاء اين كميته و سازندگان تراشه توافق كردهاند كه از تكنيك تسهيم OFDM استفاده نمايند ولی با اين وجود روش PBCC نيز میتواند به عنوان يك روش جايگزين و رقيب مطرح باشد.
كميته 802.11h مسئول تهيه استانداردهای يكنواخت و يكپارچه برای توان مصرفی و نيز توان امواج ارسالی توسط فرستندههای مبتنی بر 802.11 است.
فعاليت دو كميته 802.11i و 802.11x در ابتدا برروی سيستمهای مبتنی بر 802.11b تمركز داشت. اين دو كميته مسئول تهيه پروتكلهای جديد امنيت هستند. استاندارد اوليه از الگوريتمی موسوم به WEP استفاده میكند كه در آن دو ساختار كليد رمز نگاری به طول 40 و 128 بيت وجود دارد. WEP مشخصاً يك روش رمزنگاری است كه از الگوريتم RC4 برای رمزنگاری فريمها استفاده میكند. فعاليت اين كميته در راستای بهبود مسائل امنيتی شبكههای محلی بیسيم است.
اين استاندارد لايههای كنترل دسترسی به رسانه (MAC) و لايه فيزيكی (PHY) در يك شبكه محلی با اتصال بیسيم را دربردارد. شكل 1-1 جايگاه استاندارد 802.11 را در مقايسه با مدل مرجع نشان میدهد.
....................................
شبکههای بیسیم و انواع WWAN , WLAN , WPAN
تکنولوژی شبکههای بیسیم، با استفاده از انتقال دادهها توسط اموج رادیویی، در سادهترین صورت، به تجهیزات سختافزاری امکان میدهد تا بدوناستفاده از بسترهای فیزیکی همچون سیم و کابل، با یکدیگر ارتباط برقرار کنند. شبکههای بیسیم بازهی وسیعی از کاربردها، از ساختارهای پیچیدهیی چون شبکههای بیسیم سلولی -که اغلب برای تلفنهای همراه استفاده میشود- و شبکههای محلی بیسیم (WLAN – Wireless LAN) گرفته تا انوع سادهیی چون هدفونهای بیسیم، را شامل میشوند. از سوی دیگر با احتساب امواجی همچون مادون قرمز، تمامی تجهیزاتی که از امواج مادون قرمز نیز استفاده میکنند، مانند صفحه کلیدها، ماوسها و برخی از گوشیهای همراه، در این دستهبندی جای میگیرند. طبیعیترین مزیت استفاده از این شبکهها عدم نیاز به ساختار فیزیکی و امکان نقل و انتقال تجهیزات متصل به اینگونه شبکهها و همچنین امکان ایجاد تغییر در ساختار مجازی آنهاست. از نظر ابعاد ساختاری، شبکههای بیسیم به سه دسته تقسیم میگردند : WWAN، WLAN و WPAN.
مقصود از WWAN، که مخفف Wireless WAN است، شبکههایی با پوشش بیسیم بالاست. نمونهیی از این شبکهها، ساختار بیسیم سلولی مورد استفاده در شبکههای تلفن همراه است. WLAN پوششی محدودتر، در حد یک ساختمان یا سازمان، و در ابعاد کوچک یک سالن یا تعدادی اتاق، را فراهم میکند. کاربرد شبکههای WPAN یا Wireless Personal Area Network برای موارد خانهگی است. ارتباطاتی چون Bluetooth و مادون قرمز در این دسته قرار میگیرند.
شبکههای WPAN از سوی دیگر در دستهی شبکههای Ad Hoc نیز قرار میگیرند. در شبکههای Ad hoc، یک سختافزار، بهمحض ورود به فضای تحت پوشش آن، بهصورت پویا به شبکه اضافه میشود. مثالی از این نوع شبکهها، Bluetooth است. در این نوع، تجهیزات مختلفی از جمله صفحه کلید، ماوس، چاپگر، کامپیوتر کیفی یا جیبی و حتی گوشی تلفن همراه، در صورت قرارگرفتن در محیط تحت پوشش، وارد شبکه شده و امکان رد و بدل دادهها با دیگر تجهیزات متصل به شبکه را مییابند. تفاوت میان شبکههای Ad hoc با شبکههای محلی بیسیم (WLAN) در ساختار مجازی آنهاست. بهعبارت دیگر، ساختار مجازی شبکههای محلی بیسیم بر پایهی طرحی ایستاست درحالیکه شبکههای Ad hoc از هر نظر پویا هستند. طبیعیست که در کنار مزایایی که این پویایی برای استفاده کنندهگان فراهم میکند، حفظ امنیت چنین شبکههایی نیز با مشکلات بسیاری همراه است. با این وجود، عملاً یکی از راه حلهای موجود برای افزایش امنیت در این شبکهها، خصوصاً در انواعی همچون Bluetooth، کاستن از شعاع پوشش سیگنالهای شبکه است. در واقع مستقل از این حقیقت که عملکرد Bluetooth بر اساس فرستنده و گیرندههای کمتوان استوار است و این مزیت در کامپیوترهای جیبی برتری قابلتوجهیی محسوب میگردد، همین کمی توان سختافزار مربوطه، موجب وجود منطقهی محدود تحت پوشش است که در بررسی امنیتی نیز مزیت محسوب میگردد. بهعبارت دیگر این مزیت بههمراه استفاده از کدهای رمز نهچندان پیچیده، تنها حربههای امنیتی این دسته از شبکهها بهحساب میآیند.
...............................................
منشأ ضعف امنیتی در شبکههای بیسیم و خطرات معمول
خطر معمول در کلیهی شبکههای بیسیم مستقل از پروتکل و تکنولوژی مورد نظر، بر مزیت اصلی این تکنولوژی که همان پویایی ساختار، مبتنی بر استفاده از سیگنالهای رادیویی بهجای سیم و کابل، استوار است. با استفاده از این سیگنالها و در واقع بدون مرز ساختن پوشش ساختار شبکه، نفوذگران قادرند در صورت شکستن موانع امنیتی نهچندان قدرتمند این شبکهها، خود را بهعنوان عضوی از این شبکهها جازده و در صورت تحقق این امر، امکان دستیابی به اطلاعات حیاتی، حمله به سرویس دهندهگان سازمان و مجموعه، تخریب اطلاعات، ایجاد اختلال در ارتباطات گرههای شبکه با یکدیگر، تولید دادههای غیرواقعی و گمراهکننده، سوءاستفاده از پهنایباند مؤثر شبکه و دیگر فعالیتهای مخرب وجود دارد.
در مجموع، در تمامی دستههای شبکههای بیسیم، از دید امنیتی حقایقی مشترک صادق است :
- تمامی ضعفهای امنیتی موجود در شبکههای سیمی، در مورد شبکههای بیسیم نیز صدق میکند. در واقع نه تنها هیچ جنبهیی چه از لحاظ طراحی و چه از لحاظ ساختاری، خاص شبکههای بیسیم وجود ندارد که سطح بالاتری از امنیت منطقی را ایجاد کند، بلکه همان گونه که ذکر شد مخاطرات ویژهیی را نیز موجب است.
- نفوذگران، با گذر از تدابیر امنیتی موجود، میتوانند بهراحتی به منابع اطلاعاتی موجود بر روی سیستمهای رایانهیی دست یابند.
- اطلاعات حیاتییی که یا رمز نشدهاند و یا با روشی با امنیت پایین رمز شدهاند، و میان دو گره در شبکههای بیسیم در حال انتقال میباشند، میتوانند توسط نفوذگران سرقت شده یا تغییر یابند.
- حملههای DoS به تجهیزات و سیستمهای بیسیم بسیار متداول است.
- نفوذگران با سرقت کدهای عبور و دیگر عناصر امنیتی مشابه کاربران مجاز در شبکههای بیسیم، میتوانند به شبکهی مورد نظر بدون هیچ مانعی متصل گردند.
- با سرقت عناصر امنیتی، یک نفوذگر میتواند رفتار یک کاربر را پایش کند. از این طریق میتوان به اطلاعات حساس دیگری نیز دست یافت.
- کامپیوترهای قابل حمل و جیبی، که امکان و اجازهی استفاده از شبکهی بیسیم را دارند، بهراحتی قابل سرقت هستند. با سرقت چنین سخت افزارهایی، میتوان اولین قدم برای نفوذ به شبکه را برداشت.
- یک نفوذگر میتواند از نقاط مشترک میان یک شبکهی بیسیم در یک سازمان و شبکهی سیمی آن (که در اغلب موارد شبکهی اصلی و حساستری محسوب میگردد) استفاده کرده و با نفوذ به شبکهی بیسیم عملاً راهی برای دستیابی به منابع شبکهی سیمی نیز بیابد.
- در سطحی دیگر، با نفوذ به عناصر کنترل کنندهی یک شبکهی بیسیم، امکان ایجاد اختلال در عملکرد شبکه نیز وجود دارد.
Mohamad
02-21-2010, 01:49 PM
آموزش شبكه هاي بي سيم - Wireless Network >فصل دوم
مشخصات و خصوصیات WLAN
تکنولوژی و صنعت WLAN به اوایل دههی ۸۰ میلادی باز میگردد. مانند هر تکنولوژی دیگری، پیشرفت شبکههای محلی بیسیم به کندی صورت میپذیرفت. با ارایهی استاندارد IEEE 802.11b، که پهنای باند نسبتاً بالایی را برای شبکههای محلی امکانپذیر میساخت، استفاده از این تکنولوژی وسعت بیشتری یافت. در حال حاضر، مقصود از WLAN تمامی پروتکلها و استانداردهای خانوادهی IEEE 802.11 است.
اولین شبکهی محلی بیسیم تجاری توسط Motorola پیادهسازی شد. این شبکه، به عنوان یک نمونه از این شبکهها، هزینهیی بالا و پهنای باندی پایین را تحمیل میکرد که ابداً مقرون بهصرفه نبود. از همان زمان به بعد، در اوایل دههی ۹۰ میلادی، پروژهی استاندارد 802.11 در IEEE شروع شد. پس از نزدیک به ۹ سال کار، در سال ۱۹۹۹ استانداردهای 802.11a و 802.11b توسط IEEE نهایی شده و تولید محصولات بسیاری بر پایهی این استانداردها آغاز شد. نوع a، با استفاده از فرکانس حامل 5GHz، پهنای باندی تا 54Mbps را فراهم میکند. در حالیکه نوع b با استفاده از فرکانس حامل 2.4GHz، تا 11Mbps پهنای باند را پشتیبانی میکند. با این وجود تعداد کانالهای قابل استفاده در نوع b در مقایسه با نوع a، بیشتر است. تعداد این کانالها، با توجه به کشور مورد نظر، تفاوت میکند. در حالت معمول، مقصود از WLAN استاندارد 802.11b است.
استاندارد دیگری نیز بهتازهگی توسط IEEE معرفی شده است که به 802.11g شناخته میشود. این استاندارد بر اساس فرکانس حامل 2.4GHz عمل میکند ولی با استفاده از روشهای نوینی میتواند پهنای باند قابل استفاده را تا 54Mbps بالا ببرد. تولید محصولات بر اساس این استاندارد، که مدت زیادی از نهاییشدن و معرفی آن نمیگذرد، بیش از یکسال است که آغاز شده و با توجه سازگاری آن با استاندارد 802.11b، استفاده از آن در شبکههای بیسیم آرام آرام در حال گسترش است.
.................................................. ......
معماری شبکههای محلی بیسیم - INFRASTRUCTURE , AD HOC
استاندارد 802.11b به تجهیزات اجازه میدهد که به دو روش ارتباط در شبکه برقرار شود. این دو روش عبارتاند از برقراری ارتباط به صورت نقطه به نقطه ?همانگونه در شبکههای Ad hoc بهکار میرود- و اتصال به شبکه از طریق نقاط تماس یا دسترسی (AP=Access Point).
.................................................. .........
توپولوژی های 802.11
در يك تقسيم بندی كلی میتوان دو همبندی (توپولوژی) را برای شبكههای محلی بیسيم در نظر گرفت. سـادهترين همبندی، فیالبداهه (Ad Hoc) و براساس فرهنگ واژگان استاندارد 802.11، IBSS است. در اين همبندی ايستگاهها از طريق رسانه بیسيم به صورت نظير به نظير با يكديگر در ارتباط هستند و برای تبادل داده (تبادل پيام) از تجهيزات يا ايستگاه واسطی استفاده نمیكنند. واضح است كه در اين همبندی به سبب محدوديتهای فاصله هر ايستگاهی ضرورتاً نمیتواند با تمام ايستگاههای ديگر در تماس باشد. به اين ترتيب شرط اتصال مستقيم در همبندی IBSS آن است كه ايستگاهها در محدوده عملياتی بیسيم يا همان بُرد شبكه بیسيم قرار داشته باشند.
همبندی فیالبداهه يا IBSS
همبندی ديگر زيرساختار است. در اين همبندی عنصر خاصی موسوم به نقطه دسترسی وجود دارد. نقطه دسترسی ايستگاههای موجود در يك مجموعه سرويس را به سيستم توزيع متصل میكند. در اين هم بندی تمام ايستگاهها با نقطه دسترسی تماس میگيرند و اتصال مستقيم بين ايستگاهها وجود ندارد در واقع نقطهدسترسی وظيفه دارد فريمها (قابهای داده) را بين ايستگاهها توزيع و پخش كند.
همبندی زيرساختار در دوگونه BSS و ESS
در اين هم بندی سيستم توزيع، رسانهای است كه از طريق آن نقطه دسترسی (AP) با ساير نقاط دسترسی در تماس است و از طريق آن میتواند فريمها را به ساير ايستگاهها ارسال نمايد. از سوی ديگر میتواند بستهها را در اختيار ايستگاههای متصل به شبكه سيمی نيز قراردهد. در استاندارد 802.11 توصيف ويژهای برای سيستم توزيع ارائه نشده است، لذا محدوديتی برای پياده سازی سيستم توزيع وجود ندارد، در واقع اين استاندارد تنها خدماتی را معين میكند كه سيستم توزيع میبايست ارائه نمايد. بنابراين سيستم توزيع میتواند يك شبكه 802.3 معمولی و يا دستگاه خاصی باشد كه سرويس توزيع مورد نظر را فراهم میكند.
استاندارد 802.11 با استفاده از همبندی خاصی محدوده عملياتی شبكه را گسترش میدهد. اين همبندی به شكل مجموعه سرويس گسترش يافته (ESS) بر پا میشود. در اين روش يك مجموعه گسترده و متشكل از چندين BSS يا مجموعه سرويس پايه از طريق نقاط دسترسی با يكديگر در تماس هستند و به اين ترتيب ترافيك داده بين مجموعههای سرويس پايه مبادله شده و انتقال پيامها شكل میگيرد. در اين همبندی ايستگاهها میتوانند در محدوده عملياتی بزرگتری گردش نمايند. ارتباط بين نقاط دسترسی از طريق سيستم توزيع فراهم میشود. در واقع سيستم توزيع ستون فقرات شبكههای محلی بیسيم است و میتواند با استفاده از فنّاوری بیسيم يا شبكههای سيمی شكل گيرد. سيستم توزيع در هر نقطه دسترسی به عنوان يك لايه عملياتی ساده است كه وظيفه آن تعيين گيرنده پيام و انتقال فريم به مقصدش میباشد. نكته قابل توجه در اين همبندی آن است كه تجهيزات شبكه خارج از حوزه ESS تمام ايستگاههای سيـّار داخل ESS را صرفنظر از پويايی و تحركشان به صورت يك شبكه منفرد در سطح لايه MAC تلقی میكنند. به اين ترتيب پروتكلهای رايج شبكههای كامپيوتری كوچكترين تأثيری از سيـّار بودن ايستگاهها و رسانه بیسيم نمیپذيرند.
معماری معمول در شبکههای محلی بیسیم بر مبنای استفاده از AP است. با نصب یک AP، عملاً مرزهای یک سلول مشخص میشود و با روشهایی میتوان یک سختافزار مجهز به امکان ارتباط بر اساس استاندارد 802.11b را میان سلولهای مختلف حرکت داد. گسترهیی که یک AP پوشش میدهد را BSS-Basic Service Set مینامند. مجموعهی تمامی سلولهای یک ساختار کلی شبکه، که ترکیبی از BSSهای شبکه است، را ESS-Extended Service Set مینامند. با استفاده از ESS میتوان گسترهی وسیعتری را تحت پوشش شبکهی محلی بیسیم درآورد.
در سمت هریک از سختافزارها که معمولاً مخدوم هستند، کارت شبکهیی مجهز به یک مودم بیسیم قرار دارد که با AP ارتباط را برقرار میکند. AP علاوه بر ارتباط با چند کارت شبکهی بیسیم، به بستر پرسرعتتر شبکهی سیمی مجموعه نیز متصل است و از این طریق ارتباط میان مخدومهای مجهز به کارت شبکهی بیسیم و شبکهی اصلی برقرار میشود.
همانگونه که گفته شد، اغلب شبکههای محلی بیسیم بر اساس ساختار فوق، که به نوع Infrastructure نیز موسوم است، پیادهسازی میشوند. با این وجود نوع دیگری از شبکههای محلی بیسیم نیز وجود دارند که از همان منطق نقطهبهنقطه استفاده میکنند. در این شبکهها که عموماً Ad hoc نامیده میشوند یک نقطهی مرکزی برای دسترسی وجود ندارد و سختافزارهای همراه ? مانند کامپیوترهای کیفی و جیبی یا گوشیهای موبایل ? با ورود به محدودهی تحت پوشش این شبکه، به دیگر تجهیزات مشابه متصل میگردند. این شبکهها به بستر شبکهی سیمی متصل نیستند و به همین منظور IBSS (Independent Basic Service Set) نیز خواند میشوند.
شبکههای Ad hoc از سویی مشابه شبکههای محلی درون دفتر کار هستند که در آنها نیازی به تعریف و پیکربندی یک سیستم رایانهیی به عنوان خادم وجود ندارد. در این صورت تمامی تجهیزات متصل به این شبکه میتوانند پروندههای مورد نظر خود را با دیگر گرهها به اشتراک بگذارند.
به منظور حفظ سازگاری و توانايی تطابق و همكاری با ساير استانداردها، لايهدسترسی به رسانه (MAC) در استاندارد 802.11 میبايست از ديد لايههای بالاتر مشابه يك شبكه محلی مبتنی بر استاندارد 802 عمل كند. بدين خاطر لايه MAC در اين استاندارد مجبور است كه سيـّاربودن ايستگاههای كاری را به گونهای شفاف پوشش دهد كه از ديد لايههای بالاتر استاندارد اين سيـّاربودن احساس نشود. اين نكته سبب میشود كه لايهMAC در اين استاندارد وظايفی را بر عهده بگيرد كه معمولاً توسط لايههای بالاتر شبكه انجام میشوند. در واقع اين استاندارد لايههای فيزيكی و پيوند داده جديدی به مدل مرجع OSI اضافه میكند و به طور مشخص لايه فيزيكی جديد از فركانسهای راديويی به عنوان رسانهانتقال بهره میبرد. شكل2-5، جايگاه اين دو لايه در مدل مرجع OSI را در كنار ساير پروتكلهای شبكه سازی نشان میدهد. همانگونه كه در اين شكل مشاهده میشود وجود اين دولايه از ديد لايههای فوقانی شفاف است
.................................................. .......................
لايه فيزيكی
در اين استاندارد لايه فيزيكی سه عملكرد مشخص را انجام میدهد. اول آنكه رابطی برای تبادل فريمهای لايه MAC جهت ارسال و دريافت دادهها فراهم میكند. دوم اينكه با استفاده از روشهای تسهيم فريمهای داده را ارسال میكند و در نهايت وضعيت رسانه (كانال راديويي) را در اختيار لايه بالاتر (MAC) قرار میدهد. سه تكنيك راديويی مورد استفاده در لايه فيزيكی اين استاندارد به شرح زير میباشند:
- استفاده از تكنيك راديويی DSSS
- استفاده از تكنيك راديويی FHSS
- استفاده از امواج راديويی مادون قرمز
در اين استاندار لايه فيزيكی میتواند از امواج مادون قرمز نيز استفاده كند. در روش ارسال با استفاده از امواج مادون قرمز، اطلاعات باينری با نرخ 1 يا 2 مگابيت در ثانيه و به ترتيب با استفاده از مدولاسيون 16-PPM و 4-PPMمبادله میشوند.
Mohamad
02-21-2010, 01:49 PM
آموزش شبكه هاي بي سيم - Wireless Network >فصل دوم
مشخصات و خصوصیات WLAN
تکنولوژی و صنعت WLAN به اوایل دههی ۸۰ میلادی باز میگردد. مانند هر تکنولوژی دیگری، پیشرفت شبکههای محلی بیسیم به کندی صورت میپذیرفت. با ارایهی استاندارد IEEE 802.11b، که پهنای باند نسبتاً بالایی را برای شبکههای محلی امکانپذیر میساخت، استفاده از این تکنولوژی وسعت بیشتری یافت. در حال حاضر، مقصود از WLAN تمامی پروتکلها و استانداردهای خانوادهی IEEE 802.11 است.
اولین شبکهی محلی بیسیم تجاری توسط Motorola پیادهسازی شد. این شبکه، به عنوان یک نمونه از این شبکهها، هزینهیی بالا و پهنای باندی پایین را تحمیل میکرد که ابداً مقرون بهصرفه نبود. از همان زمان به بعد، در اوایل دههی ۹۰ میلادی، پروژهی استاندارد 802.11 در IEEE شروع شد. پس از نزدیک به ۹ سال کار، در سال ۱۹۹۹ استانداردهای 802.11a و 802.11b توسط IEEE نهایی شده و تولید محصولات بسیاری بر پایهی این استانداردها آغاز شد. نوع a، با استفاده از فرکانس حامل 5GHz، پهنای باندی تا 54Mbps را فراهم میکند. در حالیکه نوع b با استفاده از فرکانس حامل 2.4GHz، تا 11Mbps پهنای باند را پشتیبانی میکند. با این وجود تعداد کانالهای قابل استفاده در نوع b در مقایسه با نوع a، بیشتر است. تعداد این کانالها، با توجه به کشور مورد نظر، تفاوت میکند. در حالت معمول، مقصود از WLAN استاندارد 802.11b است.
استاندارد دیگری نیز بهتازهگی توسط IEEE معرفی شده است که به 802.11g شناخته میشود. این استاندارد بر اساس فرکانس حامل 2.4GHz عمل میکند ولی با استفاده از روشهای نوینی میتواند پهنای باند قابل استفاده را تا 54Mbps بالا ببرد. تولید محصولات بر اساس این استاندارد، که مدت زیادی از نهاییشدن و معرفی آن نمیگذرد، بیش از یکسال است که آغاز شده و با توجه سازگاری آن با استاندارد 802.11b، استفاده از آن در شبکههای بیسیم آرام آرام در حال گسترش است.
.................................................. ......
معماری شبکههای محلی بیسیم - INFRASTRUCTURE , AD HOC
استاندارد 802.11b به تجهیزات اجازه میدهد که به دو روش ارتباط در شبکه برقرار شود. این دو روش عبارتاند از برقراری ارتباط به صورت نقطه به نقطه ?همانگونه در شبکههای Ad hoc بهکار میرود- و اتصال به شبکه از طریق نقاط تماس یا دسترسی (AP=Access Point).
.................................................. .........
توپولوژی های 802.11
در يك تقسيم بندی كلی میتوان دو همبندی (توپولوژی) را برای شبكههای محلی بیسيم در نظر گرفت. سـادهترين همبندی، فیالبداهه (Ad Hoc) و براساس فرهنگ واژگان استاندارد 802.11، IBSS است. در اين همبندی ايستگاهها از طريق رسانه بیسيم به صورت نظير به نظير با يكديگر در ارتباط هستند و برای تبادل داده (تبادل پيام) از تجهيزات يا ايستگاه واسطی استفاده نمیكنند. واضح است كه در اين همبندی به سبب محدوديتهای فاصله هر ايستگاهی ضرورتاً نمیتواند با تمام ايستگاههای ديگر در تماس باشد. به اين ترتيب شرط اتصال مستقيم در همبندی IBSS آن است كه ايستگاهها در محدوده عملياتی بیسيم يا همان بُرد شبكه بیسيم قرار داشته باشند.
همبندی فیالبداهه يا IBSS
همبندی ديگر زيرساختار است. در اين همبندی عنصر خاصی موسوم به نقطه دسترسی وجود دارد. نقطه دسترسی ايستگاههای موجود در يك مجموعه سرويس را به سيستم توزيع متصل میكند. در اين هم بندی تمام ايستگاهها با نقطه دسترسی تماس میگيرند و اتصال مستقيم بين ايستگاهها وجود ندارد در واقع نقطهدسترسی وظيفه دارد فريمها (قابهای داده) را بين ايستگاهها توزيع و پخش كند.
همبندی زيرساختار در دوگونه BSS و ESS
در اين هم بندی سيستم توزيع، رسانهای است كه از طريق آن نقطه دسترسی (AP) با ساير نقاط دسترسی در تماس است و از طريق آن میتواند فريمها را به ساير ايستگاهها ارسال نمايد. از سوی ديگر میتواند بستهها را در اختيار ايستگاههای متصل به شبكه سيمی نيز قراردهد. در استاندارد 802.11 توصيف ويژهای برای سيستم توزيع ارائه نشده است، لذا محدوديتی برای پياده سازی سيستم توزيع وجود ندارد، در واقع اين استاندارد تنها خدماتی را معين میكند كه سيستم توزيع میبايست ارائه نمايد. بنابراين سيستم توزيع میتواند يك شبكه 802.3 معمولی و يا دستگاه خاصی باشد كه سرويس توزيع مورد نظر را فراهم میكند.
استاندارد 802.11 با استفاده از همبندی خاصی محدوده عملياتی شبكه را گسترش میدهد. اين همبندی به شكل مجموعه سرويس گسترش يافته (ESS) بر پا میشود. در اين روش يك مجموعه گسترده و متشكل از چندين BSS يا مجموعه سرويس پايه از طريق نقاط دسترسی با يكديگر در تماس هستند و به اين ترتيب ترافيك داده بين مجموعههای سرويس پايه مبادله شده و انتقال پيامها شكل میگيرد. در اين همبندی ايستگاهها میتوانند در محدوده عملياتی بزرگتری گردش نمايند. ارتباط بين نقاط دسترسی از طريق سيستم توزيع فراهم میشود. در واقع سيستم توزيع ستون فقرات شبكههای محلی بیسيم است و میتواند با استفاده از فنّاوری بیسيم يا شبكههای سيمی شكل گيرد. سيستم توزيع در هر نقطه دسترسی به عنوان يك لايه عملياتی ساده است كه وظيفه آن تعيين گيرنده پيام و انتقال فريم به مقصدش میباشد. نكته قابل توجه در اين همبندی آن است كه تجهيزات شبكه خارج از حوزه ESS تمام ايستگاههای سيـّار داخل ESS را صرفنظر از پويايی و تحركشان به صورت يك شبكه منفرد در سطح لايه MAC تلقی میكنند. به اين ترتيب پروتكلهای رايج شبكههای كامپيوتری كوچكترين تأثيری از سيـّار بودن ايستگاهها و رسانه بیسيم نمیپذيرند.
معماری معمول در شبکههای محلی بیسیم بر مبنای استفاده از AP است. با نصب یک AP، عملاً مرزهای یک سلول مشخص میشود و با روشهایی میتوان یک سختافزار مجهز به امکان ارتباط بر اساس استاندارد 802.11b را میان سلولهای مختلف حرکت داد. گسترهیی که یک AP پوشش میدهد را BSS-Basic Service Set مینامند. مجموعهی تمامی سلولهای یک ساختار کلی شبکه، که ترکیبی از BSSهای شبکه است، را ESS-Extended Service Set مینامند. با استفاده از ESS میتوان گسترهی وسیعتری را تحت پوشش شبکهی محلی بیسیم درآورد.
در سمت هریک از سختافزارها که معمولاً مخدوم هستند، کارت شبکهیی مجهز به یک مودم بیسیم قرار دارد که با AP ارتباط را برقرار میکند. AP علاوه بر ارتباط با چند کارت شبکهی بیسیم، به بستر پرسرعتتر شبکهی سیمی مجموعه نیز متصل است و از این طریق ارتباط میان مخدومهای مجهز به کارت شبکهی بیسیم و شبکهی اصلی برقرار میشود.
همانگونه که گفته شد، اغلب شبکههای محلی بیسیم بر اساس ساختار فوق، که به نوع Infrastructure نیز موسوم است، پیادهسازی میشوند. با این وجود نوع دیگری از شبکههای محلی بیسیم نیز وجود دارند که از همان منطق نقطهبهنقطه استفاده میکنند. در این شبکهها که عموماً Ad hoc نامیده میشوند یک نقطهی مرکزی برای دسترسی وجود ندارد و سختافزارهای همراه ? مانند کامپیوترهای کیفی و جیبی یا گوشیهای موبایل ? با ورود به محدودهی تحت پوشش این شبکه، به دیگر تجهیزات مشابه متصل میگردند. این شبکهها به بستر شبکهی سیمی متصل نیستند و به همین منظور IBSS (Independent Basic Service Set) نیز خواند میشوند.
شبکههای Ad hoc از سویی مشابه شبکههای محلی درون دفتر کار هستند که در آنها نیازی به تعریف و پیکربندی یک سیستم رایانهیی به عنوان خادم وجود ندارد. در این صورت تمامی تجهیزات متصل به این شبکه میتوانند پروندههای مورد نظر خود را با دیگر گرهها به اشتراک بگذارند.
به منظور حفظ سازگاری و توانايی تطابق و همكاری با ساير استانداردها، لايهدسترسی به رسانه (MAC) در استاندارد 802.11 میبايست از ديد لايههای بالاتر مشابه يك شبكه محلی مبتنی بر استاندارد 802 عمل كند. بدين خاطر لايه MAC در اين استاندارد مجبور است كه سيـّاربودن ايستگاههای كاری را به گونهای شفاف پوشش دهد كه از ديد لايههای بالاتر استاندارد اين سيـّاربودن احساس نشود. اين نكته سبب میشود كه لايهMAC در اين استاندارد وظايفی را بر عهده بگيرد كه معمولاً توسط لايههای بالاتر شبكه انجام میشوند. در واقع اين استاندارد لايههای فيزيكی و پيوند داده جديدی به مدل مرجع OSI اضافه میكند و به طور مشخص لايه فيزيكی جديد از فركانسهای راديويی به عنوان رسانهانتقال بهره میبرد. شكل2-5، جايگاه اين دو لايه در مدل مرجع OSI را در كنار ساير پروتكلهای شبكه سازی نشان میدهد. همانگونه كه در اين شكل مشاهده میشود وجود اين دولايه از ديد لايههای فوقانی شفاف است
.................................................. .......................
لايه فيزيكی
در اين استاندارد لايه فيزيكی سه عملكرد مشخص را انجام میدهد. اول آنكه رابطی برای تبادل فريمهای لايه MAC جهت ارسال و دريافت دادهها فراهم میكند. دوم اينكه با استفاده از روشهای تسهيم فريمهای داده را ارسال میكند و در نهايت وضعيت رسانه (كانال راديويي) را در اختيار لايه بالاتر (MAC) قرار میدهد. سه تكنيك راديويی مورد استفاده در لايه فيزيكی اين استاندارد به شرح زير میباشند:
- استفاده از تكنيك راديويی DSSS
- استفاده از تكنيك راديويی FHSS
- استفاده از امواج راديويی مادون قرمز
در اين استاندار لايه فيزيكی میتواند از امواج مادون قرمز نيز استفاده كند. در روش ارسال با استفاده از امواج مادون قرمز، اطلاعات باينری با نرخ 1 يا 2 مگابيت در ثانيه و به ترتيب با استفاده از مدولاسيون 16-PPM و 4-PPMمبادله میشوند.
Mohamad
02-21-2010, 01:54 PM
آموزش شبكه هاي بي سيم - Wireless Network >فصل سوم و چهارم
عناصر فعال شبکههای محلی بیسیم
در شبکههای محلی بیسیم معمولاً دو نوع عنصر فعال وجود دارد :
-ایستگاه بی سیم
ایستگاه یا مخدوم بیسیم به طور معمول یک کامپیوتر کیفی یا یک ایستگاه کاری ثابت است که توسط یک کارت شبکهی بیسیم به شبکهی محلی متصل میشود.
- نقطه ی دسترسی (access point )
نقاط دسترسی در شبکههای بیسیم، همانگونه که در قسمتهای پیش نیز در مورد آن صحبت شد، سخت افزارهای فعالی هستند که عملاً نقش سوییچ در شبکههای بیسیم را بازیکرده اند.
ايستگاه بي سيم
ایستگاه یا مخدوم بیسیم به طور معمول یک کامپیوتر کیفی یا یک ایستگاه کاری ثابت است که توسط یک کارت شبکهی بیسیم به شبکهی محلی متصل میشود. این ایستگاه میتواند از سوی دیگر یک کامپیوتر جیبی یا حتی یک پویش گر بارکد نیز باشد. در برخی از کاربردها برای اینکه استفاده از سیم در پایانههای رایانهیی برای طراح و مجری دردسرساز است، برای این پایانهها که معمولاً در داخل کیوسکهایی بههمین منظور تعبیه میشود، از امکان اتصال بیسیم به شبکهی محلی استفاده میکنند. در حال حاضر اکثر کامپیوترهای کیفی موجود در بازار به این امکان بهصورت سرخود مجهز هستند و نیازی به اضافهکردن یک کارت شبکهی بیسیم نیست.
کارتهای شبکهی بیسیم عموماً برای استفاده در چاکهای PCMCIA است. در صورت نیاز به استفاده از این کارتها برای کامپیوترهای رومیزی و شخصی، با استفاده از رابطی این کارتها را بر روی چاکهای گسترش PCI نصب میکنند.
نقطه ی دسترسی - access point
نقاط دسترسی در شبکههای بیسیم، همانگونه که در قسمتهای پیش نیز در مورد آن صحبت شد، سخت افزارهای فعالی هستند که عملاً نقش سوییچ در شبکههای بیسیم را بازیکرده، امکان اتصال به شبکه های سیمی را نیز دارند. در عمل ساختار بستر اصلی شبکه عموماً سیمی است و توسط این نقاط دسترسی، مخدومها و ایستگاههای بیسیم به شبکهی سیمی اصلی متصل میگردد.
.................................................. ...
دسترسی به رسانه
روش دسترسی به رسانه در اين استاندارد CSMA/CA است كه تاحدودی به روش دسترسی CSMA/CD شباهت دارد. در اين روش ايستگاههای كاری قبل از ارسال داده كانال راديويی را كنترل میكنند و در صورتی كه كانال آزاد باشد اقدام به ارسال میكنند. در صورتی كه كانال راديويی اشغال باشد با استفاده از الگوريتم خاصی به اندازه يك زمان تصادفی صبر كرده و مجدداً اقدام به كنترل كانال راديويی میكنند. در روش CSMA/CA ايستگاه فرستنده ابتدا كانال فركانسی را كنترل كرده و در صورتی كه رسانه به مدت خاصی موسوم به DIFS آزاد باشد اقدام به ارسال میكند. گيرنده فيلد كنترلی فريم يا همان CRC را چك میكند و سپس يك فريم تصديق میفرستد. دريافت تصديق به اين معنی است كه تصادمی بروز نكرده است. در صورتی كه فرستنده اين تصديق را دريافت نكند، مجدداً فريم را ارسال میكند. اين عمل تا زمانی ادامه میيابد كه فريم تصديق ارسالی از گيرنده توسط فرستنده دريافت شود يا تكرار ارسال فريمها به تعداد آستانهای مشخصی برسد كه پس از آن فرستنده فريم را دور میاندازد.
در شبكههای بیسيم بر خلاف اِتِرنت امكان شناسايی و آشكار سازی تصادم به دو علت وجود ندارد:
پياده سازی مكانيزم آشكار سازی تصادم به روش ارسال راديويی دوطرفه نياز دارد كه با استفاده از آن ايستگاه سيّار بتواند در حين ارسال، سيگنال را دريافت كند كه اين امر باعث افزايش قابل توجه هزينه میشود.
در يك شبكه بیسيم، بر خلاف شبكههای سيمی، نمیتوان فرض كرد كه تمام ايستگاههای سيّار امواج يكديگر را دريافت میكنند. در واقع در محيط بیسيم حالاتی قابل تصور است كه به آنها نقاط پنهان میگوييم. در شكل زير ايستگاههای كاری "A" و "B" هر دو در محدوده تحت پوشش نقطه دسترسی هستند ولی در محدوده يكديگر قرار ندارند.
برای غلبه بر اين مشكل، استاندارد 802.11 از تكنيكی موسوم به اجتناب از تصادم و مكانيزم تصديق استفاده میكند. همچنين با توجه به احتمال بروز روزنههای پنهان و نيز به منظور كاهش احتمال تصادم در اين استاندارد از روشی موسوم به شنود مجازی رسانه يا VCS استفاده میشود. در اين روش ايستگاه فرستنده ابتدا يك بسته كنترلی موسوم به تقاضای ارسال حاوی نشانی فرستنده، نشانی گيرنده، و زمان مورد نياز برای اشغال كانال راديويی را میفرستد. هنگامی كه گيرنده اين فريم را دريافت میكند، رسانه را كنترل میكند و در صورتی كه رسانه آزاد باشد فريم كنترلی CTS را به نشانی فرستنده ارسال میكند. تمام ايستگاههايی كه فريمهای كنترلی RTS/CTS را دريافت میكنند وضعيت كنترل رسانه خود موسوم به شاخصNAV را تنظيم میكنند. در صورتی كه ساير ايستگاهها بخواهند فريمی را ارسال كنند علاوه بر كنترل فيزيكی رسانه (كانال راديويی) به پارامتر NAV خود مراجعه میكنند كه مرتباً به صورت پويا تغيير میكند. به اين ترتيب مشكل روزنههای پنهان حل شده و تصادمها نيز به حداقل مقدار میرسند.
.................................
برد و سطح پوشش
شعاع پوشش شبکهی بیسیم بر اساس استاندارد 802.11 به فاکتورهای بسیاری بستهگی دارد که برخی از آنها به شرح زیر هستند :
- پهنای باند مورد استفاده
- منابع امواج ارسالی و محل قرارگیری فرستندهها و گیرندهها
- مشخصات فضای قرارگیری و نصب تجهیزات شبکهی بیسیم
- قدرت امواج
- نوع و مدل آنتن
شعاع پوشش از نظر تئوری بین ۲۹متر (برای فضاهای بستهی داخلی) و ۴۸۵متر (برای فضاهای باز) در استاندارد 802.11b متغیر است. با اینوجود این مقادیر، مقادیری متوسط هستند و در حال حاضر با توجه به گیرندهها و فرستندههای نسبتاً قدرتمندی که مورد استفاده قرار میگیرند، امکان استفاده از این پروتکل و گیرندهها و فرستندههای آن، تا چند کیلومتر هم وجود دارد که نمونههای عملی آن فراواناند.
با این وجود شعاع کلییی که برای استفاده از این پروتکل (802.11b) ذکر میشود چیزی میان ۵۰ تا ۱۰۰متر است. این شعاع عملکرد مقداریست که برای محلهای بسته و ساختمانهای چند طبقه نیز معتبر بوده و میتواند مورد استناد قرار گیرد.
یکی از عملکردهای نقاط دسترسی به عنوان سوییچهای بیسیم، عمل اتصال میان حوزههای بیسیم است. بهعبارت دیگر با استفاده از چند سوییچ بیسیم میتوان عملکردی مشابه Bridge برای شبکههای بیسیم را بهدست آورد.
اتصال میان نقاط دسترسی میتواند به صورت نقطهبهنقطه، برای ایجاد اتصال میان دو زیرشبکه به یکدیگر، یا به صورت نقطهیی به چند نقطه یا بالعکس برای ایجاد اتصال میان زیرشبکههای مختلف به یکدیگر بهصورت همزمان صورت گیرد.
نقاط دسترسییی که به عنوان پل ارتباطی میان شبکههای محلی با یکدیگر استفاده میشوند از قدرت بالاتری برای ارسال داده استفاده میکنند و این بهمعنای شعاع پوشش بالاتر است. این سختافزارها معمولاً برای ایجاد اتصال میان نقاط و ساختمانهایی بهکار میروند که فاصلهی آنها از یکدیگر بین ۱ تا ۵ کیلومتر است. البته باید توجه داشت که این فاصله، فاصلهیی متوسط بر اساس پروتکل 802.11b است. برای پروتکلهای دیگری چون 802.11a میتوان فواصل بیشتری را نیز بهدست آورد.
از دیگر استفادههای نقاط دسترسی با برد بالا میتوان به امکان توسعهی شعاع پوشش شبکه های بیسیم اشاره کرد. به عبارت دیگر برای بالابردن سطح تحت پوشش یک شبکهی بیسیم، میتوان از چند نقطهی دسترسی بیسیم بهصورت همزمان و پشت به پشت یکدیگر استفاده کرد. به عنوان نمونه در مثال بالا میتوان با استفاده از یک فرستندهی دیگر در بالای هریک از ساختمانها، سطح پوشش شبکه را تا ساختمانهای دیگر گسترش داد.
..........................................
خدمات توزيع
خدمات توزيع عملكرد لازم در همبندیهای مبتنی بر سيستم توزيع را مهيا میسازد. معمولاً خدمات توزيع توسط نقطه دسترسی فراهم میشوند. خدمات توزيع در اين استاندارد عبارتند از:
- پيوستن به شبكه
- خروج از شبكه بیسيم
- پيوستن مجدد
- توزيع
- مجتمع سازی
سرويس اول يك ارتباط منطقی ميان ايستگاه سيّار و نقطه دسترسی فراهم میكند. هر ايستگاه كاری قبل از ارسال داده میبايست با يك نقطه دسترسی برروی سيستم ميزبان مرتبط گردد. اين عضويت، به سيستم توزيع امكان میدهد كه فريمهای ارسال شده به سمت ايستگاه سيّار را به درستی در اختيارش قرار دهد. خروج از شبكه بیسيم هنگامی بكار میرود كه بخواهيم اجباراً ارتباط ايستگاه سيّار را از نقطه دسترسی قطع كنيم و يا هنگامی كه ايستگاه سيّار بخواهد خاتمه نيازش به نقطه دسترسی را اعلام كند. سرويس پيوستن مجدد هنگامی مورد نياز است كه ايستگاه سيّار بخواهد با نقطه دسترسی ديگری تماس بگيرد. اين سرويس مشابه "پيوستن به شبكه بیسيم" است با اين تفاوت كه در اين سرويس ايستگاه سيّار نقطه دسترسی قبلی خود را به نقطه دسترسی جديدی اعلام میكند كه قصد دارد به آن متصل شود. پيوستن مجدد با توجه به تحرك و سيّار بودن ايستگاه كاری امری ضروری و اجتناب ناپذير است. اين اطلاع، (اعلام نقطه دسترسی قبلی) به نقطه دسترسی جديد كمك میكند كه با نقطه دسترسی قبلی تماس گرفته و فريمهای بافر شده احتمالی را دريافت كند كه به مقصد اين ايستگاه سيّار فرستاده شدهاند. با استفاده از سرويس توزيع فريمهای لايه MAC به مقصد مورد نظرشان میرسند. مجتمع سازی سرويسی است كه شبكه محلی بیسيم را به ساير شبكههای محلی و يا يك يا چند شبكه محلی بیسيم ديگر متصل میكند. سرويس مجتمع سازی فريمهای 802.11 را به فريمهايی ترجمه میكند كه بتوانند در ساير شبكهها (به عنوان مثال 802.3) جاری شوند. اين عمل ترجمه دو طرفه است بدان معنی كه فريمهای ساير شبكهها نيز به فريمهای 802.11 ترجمه شده و از طريق امواج در اختيار ايستگاههای كاری سيّار قرار میگيرند.
.................................................. .................................
.................................................. .................................................. .................................................. ....
امنیت و پروتکل WEP
از این قسمت بررسی روشها و استانداردهای امنسازی شبکههای محلی بیسیم مبتنی بر استاندارد IEEE 802.11 را آغاز میکنیم. با طرح قابلیتهای امنیتی این استاندارد، میتوان از محدودیتهای آن آگاه شد و این استاندارد و کاربرد را برای موارد خاص و مناسب مورد استفاده قرار داد. استاندارد 802.11 سرویسهای مجزا و مشخصی را برای تأمین یک محیط امن بیسیم در اختیار قرار میدهد. این سرویسها اغلب توسط پروتکل WEP (Wired Equivalent Privacy) تأمین میگردند و وظیفهی آنها امنسازی ارتباط میان مخدومها و نقاط دسترسی بیسیم است. درک لایهیی که این پروتکل به امنسازی آن میپردازد اهمیت ویژهیی دارد، به عبارت دیگر این پروتکل کل ارتباط را امن نکرده و به لایههای دیگر، غیر از لایهی ارتباطی بیسیم که مبتنی بر استاندارد 802.11 است، کاری ندارد. این بدان معنی است که استفاده از WEP در یک شبکهی بیسیم بهمعنی استفاده از قابلیت درونی استاندارد شبکههای محلی بیسیم است و ضامن امنیت کل ارتباط نیست زیرا امکان قصور از دیگر اصول امنیتی در سطوح بالاتر ارتباطی وجود دارد.
..................................................
قابلیتها و ابعاد امنیتی استاندارد 802.11
در حال حاضر عملاً تنها پروتکلی که امنیت اطلاعات و ارتباطات را در شبکههای بیسیم بر اساس استاندارد 802.11 فراهم میکند WEP است. این پروتکل با وجود قابلیتهایی که دارد، نوع استفاده از آن همواره امکان نفوذ به شبکههای بیسیم را به نحوی، ولو سخت و پیچیده، فراهم میکند. نکتهیی که باید بهخاطر داشت اینست که اغلب حملات موفق صورت گرفته در مورد شبکههای محلی بیسیم، ریشه در پیکربندی ناصحیح WEP در شبکه دارد. به عبارت دیگر این پروتکل در صورت پیکربندی صحیح درصد بالایی از حملات را ناکام میگذارد، هرچند که فینفسه دچار نواقص و ایرادهایی نیز هست.
بسیاری از حملاتی که بر روی شبکههای بیسیم انجام میگیرد از سویی است که نقاط دسترسی با شبکهی سیمی دارای اشتراک هستند. به عبارت دیگر نفوذگران بعضاً با استفاده از راههای ارتباطی دیگری که بر روی مخدومها و سختافزارهای بیسیم، خصوصاً مخدومهای بیسیم، وجود دارد، به شبکهی بیسیم نفوذ میکنند که این مقوله نشان دهندهی اشتراکی هرچند جزءیی میان امنیت در شبکههای سیمی و بیسیمییست که از نظر ساختاری و فیزیکی با یکدیگر اشتراک دارند.
سه قابلیت و سرویس پایه توسط IEEE برای شبکههای محلی بیسیم تعریف میگردد :
· Authentication
· Confidentiality
· Integrity
Authentication
هدف اصلی WEP ایجاد امکانی برای احراز هویت مخدوم بیسیم است. این عمل که در واقع کنترل دسترسی به شبکهی بیسیم است. این مکانیزم سعی دارد که امکان اتصال مخدومهایی را که مجاز نیستند به شبکه متصل شوند از بین ببرد.
Confidentiality
محرمانهگی هدف دیگر WEP است. این بُعد از سرویسها و خدمات WEP با هدف ایجاد امنیتی در حدود سطوح شبکههای سیمی طراحی شده است. ---------- این بخش از WEP جلوگیری از سرقت اطلاعات در حال انتقال بر روی شبکهی محلی بیسیم است.
Integrity
هدف سوم از سرویسها و قابلیتهای WEP طراحی سیاستی است که تضمین کند پیامها و اطلاعات در حال تبادل در شبکه، خصوصاً میان مخدومهای بیسیم و نقاط دسترسی، در حین انتقال دچار تغییر نمیگردند. این قابلیت در تمامی استانداردها، بسترها و شبکههای ارتباطاتی دیگر نیز کموبیش وجود دارد.
.................................................. .
خدمات ايستگاهی
بر اساس اين استاندارد خدمات خاصی در ايستگاههای كاری پيادهسازی میشوند. در حقيقت تمام ايستگاههای كاری موجود در يك شبكه محلی مبتنی بر 802.11 و نيز نقاط دسترسی موظف هستند كه خدمات ايستگاهی را فراهم نمايند. با توجه به اينكه امنيت فيزيكی به منظور جلوگيری از دسترسی غير مجاز بر خلاف شبكههای سيمی، در شبكههای بیسيم قابل اعمال نيست استاندارد 802.11 خدمات هويت سنجی را به منظور كنترل دسترسی به شبكه تعريف مینمايد. سرويس هويت سنجی به ايستگاه كاری امكان میدهد كه ايستگاه ديگری را شناسايی نمايد. قبل از اثبات هويت ايستگاه كاری، آن ايستگاه مجاز نيست كه از شبكه بیسيم برای تبادل داده استفاده نمايد. در يك تقسيم بندی كلی 802.11 دو گونه خدمت هويت سنجی را تعريف میكند:
- Open System Authentication
- Shared Key Authentication
روش اول، متد پيش فرض است و يك فرآيند دو مرحلهای است. در ابتدا ايستگاهی كه میخواهد توسط ايستگاه ديگر شناسايی و هويت سنجی شود يك فريم مديريتی هويت سنجی شامل شناسه ايستگاه فرستنده، ارسال میكند. ايستگاه گيرنده نيز فريمی در پاسخ میفرستد كه آيا فرستنده را میشناسد يا خير. روش دوم كمی پيچيدهتر است و فرض میكند كه هر ايستگاه از طريق يك كانال مستقل و امن، يك كليد مشترك سّری دريافت كرده است. ايستگاههای كاری با استفاده از اين كليد مشترك و با بهرهگيری از پروتكلی موسوم به WEP اقدام به هويت سنجی يكديگر مینمايند. يكی ديگر از خدمات ايستگاهی خاتمه ارتباط يا خاتمه هويت سنجی است. با استفاده از اين خدمت، دسترسی ايستگاهی كه سابقاً مجاز به استفاده از شبكه بوده است، قطع میگردد.
در يك شبكه بیسيم، تمام ايستگاههای كاری و ساير تجهيزات قادر هستند ترافيك دادهای را "بشنوند" – در واقع ترافيك در بستر امواج مبادله میشود كه توسط تمام ايستگاههای كاری قابل دريافت است. اين ويژگی سطح امنيتی يك ارتباط بیسيم را تحت تأثير قرار میدهد. به همين دليل در استاندارد 802.11 پروتكلی موسوم به WEP تعبيه شده است كه برروی تمام فريمهای داده و برخی فريمهای مديريتی و هويت سنجی اعمال میشود. اين استاندارد در پی آن است تا با استفاده از اين الگوريتم سطح اختفاء وپوشش را معادل با شبكههای سيمی نمايد.
Mohamad
02-21-2010, 01:54 PM
آموزش شبكه هاي بي سيم - Wireless Network >فصل سوم و چهارم
عناصر فعال شبکههای محلی بیسیم
در شبکههای محلی بیسیم معمولاً دو نوع عنصر فعال وجود دارد :
-ایستگاه بی سیم
ایستگاه یا مخدوم بیسیم به طور معمول یک کامپیوتر کیفی یا یک ایستگاه کاری ثابت است که توسط یک کارت شبکهی بیسیم به شبکهی محلی متصل میشود.
- نقطه ی دسترسی (access point )
نقاط دسترسی در شبکههای بیسیم، همانگونه که در قسمتهای پیش نیز در مورد آن صحبت شد، سخت افزارهای فعالی هستند که عملاً نقش سوییچ در شبکههای بیسیم را بازیکرده اند.
ايستگاه بي سيم
ایستگاه یا مخدوم بیسیم به طور معمول یک کامپیوتر کیفی یا یک ایستگاه کاری ثابت است که توسط یک کارت شبکهی بیسیم به شبکهی محلی متصل میشود. این ایستگاه میتواند از سوی دیگر یک کامپیوتر جیبی یا حتی یک پویش گر بارکد نیز باشد. در برخی از کاربردها برای اینکه استفاده از سیم در پایانههای رایانهیی برای طراح و مجری دردسرساز است، برای این پایانهها که معمولاً در داخل کیوسکهایی بههمین منظور تعبیه میشود، از امکان اتصال بیسیم به شبکهی محلی استفاده میکنند. در حال حاضر اکثر کامپیوترهای کیفی موجود در بازار به این امکان بهصورت سرخود مجهز هستند و نیازی به اضافهکردن یک کارت شبکهی بیسیم نیست.
کارتهای شبکهی بیسیم عموماً برای استفاده در چاکهای PCMCIA است. در صورت نیاز به استفاده از این کارتها برای کامپیوترهای رومیزی و شخصی، با استفاده از رابطی این کارتها را بر روی چاکهای گسترش PCI نصب میکنند.
نقطه ی دسترسی - access point
نقاط دسترسی در شبکههای بیسیم، همانگونه که در قسمتهای پیش نیز در مورد آن صحبت شد، سخت افزارهای فعالی هستند که عملاً نقش سوییچ در شبکههای بیسیم را بازیکرده، امکان اتصال به شبکه های سیمی را نیز دارند. در عمل ساختار بستر اصلی شبکه عموماً سیمی است و توسط این نقاط دسترسی، مخدومها و ایستگاههای بیسیم به شبکهی سیمی اصلی متصل میگردد.
.................................................. ...
دسترسی به رسانه
روش دسترسی به رسانه در اين استاندارد CSMA/CA است كه تاحدودی به روش دسترسی CSMA/CD شباهت دارد. در اين روش ايستگاههای كاری قبل از ارسال داده كانال راديويی را كنترل میكنند و در صورتی كه كانال آزاد باشد اقدام به ارسال میكنند. در صورتی كه كانال راديويی اشغال باشد با استفاده از الگوريتم خاصی به اندازه يك زمان تصادفی صبر كرده و مجدداً اقدام به كنترل كانال راديويی میكنند. در روش CSMA/CA ايستگاه فرستنده ابتدا كانال فركانسی را كنترل كرده و در صورتی كه رسانه به مدت خاصی موسوم به DIFS آزاد باشد اقدام به ارسال میكند. گيرنده فيلد كنترلی فريم يا همان CRC را چك میكند و سپس يك فريم تصديق میفرستد. دريافت تصديق به اين معنی است كه تصادمی بروز نكرده است. در صورتی كه فرستنده اين تصديق را دريافت نكند، مجدداً فريم را ارسال میكند. اين عمل تا زمانی ادامه میيابد كه فريم تصديق ارسالی از گيرنده توسط فرستنده دريافت شود يا تكرار ارسال فريمها به تعداد آستانهای مشخصی برسد كه پس از آن فرستنده فريم را دور میاندازد.
در شبكههای بیسيم بر خلاف اِتِرنت امكان شناسايی و آشكار سازی تصادم به دو علت وجود ندارد:
پياده سازی مكانيزم آشكار سازی تصادم به روش ارسال راديويی دوطرفه نياز دارد كه با استفاده از آن ايستگاه سيّار بتواند در حين ارسال، سيگنال را دريافت كند كه اين امر باعث افزايش قابل توجه هزينه میشود.
در يك شبكه بیسيم، بر خلاف شبكههای سيمی، نمیتوان فرض كرد كه تمام ايستگاههای سيّار امواج يكديگر را دريافت میكنند. در واقع در محيط بیسيم حالاتی قابل تصور است كه به آنها نقاط پنهان میگوييم. در شكل زير ايستگاههای كاری "A" و "B" هر دو در محدوده تحت پوشش نقطه دسترسی هستند ولی در محدوده يكديگر قرار ندارند.
برای غلبه بر اين مشكل، استاندارد 802.11 از تكنيكی موسوم به اجتناب از تصادم و مكانيزم تصديق استفاده میكند. همچنين با توجه به احتمال بروز روزنههای پنهان و نيز به منظور كاهش احتمال تصادم در اين استاندارد از روشی موسوم به شنود مجازی رسانه يا VCS استفاده میشود. در اين روش ايستگاه فرستنده ابتدا يك بسته كنترلی موسوم به تقاضای ارسال حاوی نشانی فرستنده، نشانی گيرنده، و زمان مورد نياز برای اشغال كانال راديويی را میفرستد. هنگامی كه گيرنده اين فريم را دريافت میكند، رسانه را كنترل میكند و در صورتی كه رسانه آزاد باشد فريم كنترلی CTS را به نشانی فرستنده ارسال میكند. تمام ايستگاههايی كه فريمهای كنترلی RTS/CTS را دريافت میكنند وضعيت كنترل رسانه خود موسوم به شاخصNAV را تنظيم میكنند. در صورتی كه ساير ايستگاهها بخواهند فريمی را ارسال كنند علاوه بر كنترل فيزيكی رسانه (كانال راديويی) به پارامتر NAV خود مراجعه میكنند كه مرتباً به صورت پويا تغيير میكند. به اين ترتيب مشكل روزنههای پنهان حل شده و تصادمها نيز به حداقل مقدار میرسند.
.................................
برد و سطح پوشش
شعاع پوشش شبکهی بیسیم بر اساس استاندارد 802.11 به فاکتورهای بسیاری بستهگی دارد که برخی از آنها به شرح زیر هستند :
- پهنای باند مورد استفاده
- منابع امواج ارسالی و محل قرارگیری فرستندهها و گیرندهها
- مشخصات فضای قرارگیری و نصب تجهیزات شبکهی بیسیم
- قدرت امواج
- نوع و مدل آنتن
شعاع پوشش از نظر تئوری بین ۲۹متر (برای فضاهای بستهی داخلی) و ۴۸۵متر (برای فضاهای باز) در استاندارد 802.11b متغیر است. با اینوجود این مقادیر، مقادیری متوسط هستند و در حال حاضر با توجه به گیرندهها و فرستندههای نسبتاً قدرتمندی که مورد استفاده قرار میگیرند، امکان استفاده از این پروتکل و گیرندهها و فرستندههای آن، تا چند کیلومتر هم وجود دارد که نمونههای عملی آن فراواناند.
با این وجود شعاع کلییی که برای استفاده از این پروتکل (802.11b) ذکر میشود چیزی میان ۵۰ تا ۱۰۰متر است. این شعاع عملکرد مقداریست که برای محلهای بسته و ساختمانهای چند طبقه نیز معتبر بوده و میتواند مورد استناد قرار گیرد.
یکی از عملکردهای نقاط دسترسی به عنوان سوییچهای بیسیم، عمل اتصال میان حوزههای بیسیم است. بهعبارت دیگر با استفاده از چند سوییچ بیسیم میتوان عملکردی مشابه Bridge برای شبکههای بیسیم را بهدست آورد.
اتصال میان نقاط دسترسی میتواند به صورت نقطهبهنقطه، برای ایجاد اتصال میان دو زیرشبکه به یکدیگر، یا به صورت نقطهیی به چند نقطه یا بالعکس برای ایجاد اتصال میان زیرشبکههای مختلف به یکدیگر بهصورت همزمان صورت گیرد.
نقاط دسترسییی که به عنوان پل ارتباطی میان شبکههای محلی با یکدیگر استفاده میشوند از قدرت بالاتری برای ارسال داده استفاده میکنند و این بهمعنای شعاع پوشش بالاتر است. این سختافزارها معمولاً برای ایجاد اتصال میان نقاط و ساختمانهایی بهکار میروند که فاصلهی آنها از یکدیگر بین ۱ تا ۵ کیلومتر است. البته باید توجه داشت که این فاصله، فاصلهیی متوسط بر اساس پروتکل 802.11b است. برای پروتکلهای دیگری چون 802.11a میتوان فواصل بیشتری را نیز بهدست آورد.
از دیگر استفادههای نقاط دسترسی با برد بالا میتوان به امکان توسعهی شعاع پوشش شبکه های بیسیم اشاره کرد. به عبارت دیگر برای بالابردن سطح تحت پوشش یک شبکهی بیسیم، میتوان از چند نقطهی دسترسی بیسیم بهصورت همزمان و پشت به پشت یکدیگر استفاده کرد. به عنوان نمونه در مثال بالا میتوان با استفاده از یک فرستندهی دیگر در بالای هریک از ساختمانها، سطح پوشش شبکه را تا ساختمانهای دیگر گسترش داد.
..........................................
خدمات توزيع
خدمات توزيع عملكرد لازم در همبندیهای مبتنی بر سيستم توزيع را مهيا میسازد. معمولاً خدمات توزيع توسط نقطه دسترسی فراهم میشوند. خدمات توزيع در اين استاندارد عبارتند از:
- پيوستن به شبكه
- خروج از شبكه بیسيم
- پيوستن مجدد
- توزيع
- مجتمع سازی
سرويس اول يك ارتباط منطقی ميان ايستگاه سيّار و نقطه دسترسی فراهم میكند. هر ايستگاه كاری قبل از ارسال داده میبايست با يك نقطه دسترسی برروی سيستم ميزبان مرتبط گردد. اين عضويت، به سيستم توزيع امكان میدهد كه فريمهای ارسال شده به سمت ايستگاه سيّار را به درستی در اختيارش قرار دهد. خروج از شبكه بیسيم هنگامی بكار میرود كه بخواهيم اجباراً ارتباط ايستگاه سيّار را از نقطه دسترسی قطع كنيم و يا هنگامی كه ايستگاه سيّار بخواهد خاتمه نيازش به نقطه دسترسی را اعلام كند. سرويس پيوستن مجدد هنگامی مورد نياز است كه ايستگاه سيّار بخواهد با نقطه دسترسی ديگری تماس بگيرد. اين سرويس مشابه "پيوستن به شبكه بیسيم" است با اين تفاوت كه در اين سرويس ايستگاه سيّار نقطه دسترسی قبلی خود را به نقطه دسترسی جديدی اعلام میكند كه قصد دارد به آن متصل شود. پيوستن مجدد با توجه به تحرك و سيّار بودن ايستگاه كاری امری ضروری و اجتناب ناپذير است. اين اطلاع، (اعلام نقطه دسترسی قبلی) به نقطه دسترسی جديد كمك میكند كه با نقطه دسترسی قبلی تماس گرفته و فريمهای بافر شده احتمالی را دريافت كند كه به مقصد اين ايستگاه سيّار فرستاده شدهاند. با استفاده از سرويس توزيع فريمهای لايه MAC به مقصد مورد نظرشان میرسند. مجتمع سازی سرويسی است كه شبكه محلی بیسيم را به ساير شبكههای محلی و يا يك يا چند شبكه محلی بیسيم ديگر متصل میكند. سرويس مجتمع سازی فريمهای 802.11 را به فريمهايی ترجمه میكند كه بتوانند در ساير شبكهها (به عنوان مثال 802.3) جاری شوند. اين عمل ترجمه دو طرفه است بدان معنی كه فريمهای ساير شبكهها نيز به فريمهای 802.11 ترجمه شده و از طريق امواج در اختيار ايستگاههای كاری سيّار قرار میگيرند.
.................................................. .................................
.................................................. .................................................. .................................................. ....
امنیت و پروتکل WEP
از این قسمت بررسی روشها و استانداردهای امنسازی شبکههای محلی بیسیم مبتنی بر استاندارد IEEE 802.11 را آغاز میکنیم. با طرح قابلیتهای امنیتی این استاندارد، میتوان از محدودیتهای آن آگاه شد و این استاندارد و کاربرد را برای موارد خاص و مناسب مورد استفاده قرار داد. استاندارد 802.11 سرویسهای مجزا و مشخصی را برای تأمین یک محیط امن بیسیم در اختیار قرار میدهد. این سرویسها اغلب توسط پروتکل WEP (Wired Equivalent Privacy) تأمین میگردند و وظیفهی آنها امنسازی ارتباط میان مخدومها و نقاط دسترسی بیسیم است. درک لایهیی که این پروتکل به امنسازی آن میپردازد اهمیت ویژهیی دارد، به عبارت دیگر این پروتکل کل ارتباط را امن نکرده و به لایههای دیگر، غیر از لایهی ارتباطی بیسیم که مبتنی بر استاندارد 802.11 است، کاری ندارد. این بدان معنی است که استفاده از WEP در یک شبکهی بیسیم بهمعنی استفاده از قابلیت درونی استاندارد شبکههای محلی بیسیم است و ضامن امنیت کل ارتباط نیست زیرا امکان قصور از دیگر اصول امنیتی در سطوح بالاتر ارتباطی وجود دارد.
..................................................
قابلیتها و ابعاد امنیتی استاندارد 802.11
در حال حاضر عملاً تنها پروتکلی که امنیت اطلاعات و ارتباطات را در شبکههای بیسیم بر اساس استاندارد 802.11 فراهم میکند WEP است. این پروتکل با وجود قابلیتهایی که دارد، نوع استفاده از آن همواره امکان نفوذ به شبکههای بیسیم را به نحوی، ولو سخت و پیچیده، فراهم میکند. نکتهیی که باید بهخاطر داشت اینست که اغلب حملات موفق صورت گرفته در مورد شبکههای محلی بیسیم، ریشه در پیکربندی ناصحیح WEP در شبکه دارد. به عبارت دیگر این پروتکل در صورت پیکربندی صحیح درصد بالایی از حملات را ناکام میگذارد، هرچند که فینفسه دچار نواقص و ایرادهایی نیز هست.
بسیاری از حملاتی که بر روی شبکههای بیسیم انجام میگیرد از سویی است که نقاط دسترسی با شبکهی سیمی دارای اشتراک هستند. به عبارت دیگر نفوذگران بعضاً با استفاده از راههای ارتباطی دیگری که بر روی مخدومها و سختافزارهای بیسیم، خصوصاً مخدومهای بیسیم، وجود دارد، به شبکهی بیسیم نفوذ میکنند که این مقوله نشان دهندهی اشتراکی هرچند جزءیی میان امنیت در شبکههای سیمی و بیسیمییست که از نظر ساختاری و فیزیکی با یکدیگر اشتراک دارند.
سه قابلیت و سرویس پایه توسط IEEE برای شبکههای محلی بیسیم تعریف میگردد :
· Authentication
· Confidentiality
· Integrity
Authentication
هدف اصلی WEP ایجاد امکانی برای احراز هویت مخدوم بیسیم است. این عمل که در واقع کنترل دسترسی به شبکهی بیسیم است. این مکانیزم سعی دارد که امکان اتصال مخدومهایی را که مجاز نیستند به شبکه متصل شوند از بین ببرد.
Confidentiality
محرمانهگی هدف دیگر WEP است. این بُعد از سرویسها و خدمات WEP با هدف ایجاد امنیتی در حدود سطوح شبکههای سیمی طراحی شده است. ---------- این بخش از WEP جلوگیری از سرقت اطلاعات در حال انتقال بر روی شبکهی محلی بیسیم است.
Integrity
هدف سوم از سرویسها و قابلیتهای WEP طراحی سیاستی است که تضمین کند پیامها و اطلاعات در حال تبادل در شبکه، خصوصاً میان مخدومهای بیسیم و نقاط دسترسی، در حین انتقال دچار تغییر نمیگردند. این قابلیت در تمامی استانداردها، بسترها و شبکههای ارتباطاتی دیگر نیز کموبیش وجود دارد.
.................................................. .
خدمات ايستگاهی
بر اساس اين استاندارد خدمات خاصی در ايستگاههای كاری پيادهسازی میشوند. در حقيقت تمام ايستگاههای كاری موجود در يك شبكه محلی مبتنی بر 802.11 و نيز نقاط دسترسی موظف هستند كه خدمات ايستگاهی را فراهم نمايند. با توجه به اينكه امنيت فيزيكی به منظور جلوگيری از دسترسی غير مجاز بر خلاف شبكههای سيمی، در شبكههای بیسيم قابل اعمال نيست استاندارد 802.11 خدمات هويت سنجی را به منظور كنترل دسترسی به شبكه تعريف مینمايد. سرويس هويت سنجی به ايستگاه كاری امكان میدهد كه ايستگاه ديگری را شناسايی نمايد. قبل از اثبات هويت ايستگاه كاری، آن ايستگاه مجاز نيست كه از شبكه بیسيم برای تبادل داده استفاده نمايد. در يك تقسيم بندی كلی 802.11 دو گونه خدمت هويت سنجی را تعريف میكند:
- Open System Authentication
- Shared Key Authentication
روش اول، متد پيش فرض است و يك فرآيند دو مرحلهای است. در ابتدا ايستگاهی كه میخواهد توسط ايستگاه ديگر شناسايی و هويت سنجی شود يك فريم مديريتی هويت سنجی شامل شناسه ايستگاه فرستنده، ارسال میكند. ايستگاه گيرنده نيز فريمی در پاسخ میفرستد كه آيا فرستنده را میشناسد يا خير. روش دوم كمی پيچيدهتر است و فرض میكند كه هر ايستگاه از طريق يك كانال مستقل و امن، يك كليد مشترك سّری دريافت كرده است. ايستگاههای كاری با استفاده از اين كليد مشترك و با بهرهگيری از پروتكلی موسوم به WEP اقدام به هويت سنجی يكديگر مینمايند. يكی ديگر از خدمات ايستگاهی خاتمه ارتباط يا خاتمه هويت سنجی است. با استفاده از اين خدمت، دسترسی ايستگاهی كه سابقاً مجاز به استفاده از شبكه بوده است، قطع میگردد.
در يك شبكه بیسيم، تمام ايستگاههای كاری و ساير تجهيزات قادر هستند ترافيك دادهای را "بشنوند" – در واقع ترافيك در بستر امواج مبادله میشود كه توسط تمام ايستگاههای كاری قابل دريافت است. اين ويژگی سطح امنيتی يك ارتباط بیسيم را تحت تأثير قرار میدهد. به همين دليل در استاندارد 802.11 پروتكلی موسوم به WEP تعبيه شده است كه برروی تمام فريمهای داده و برخی فريمهای مديريتی و هويت سنجی اعمال میشود. اين استاندارد در پی آن است تا با استفاده از اين الگوريتم سطح اختفاء وپوشش را معادل با شبكههای سيمی نمايد.
Mohamad
02-21-2010, 01:55 PM
آموزش شبكه هاي بي سيم - Wireless Network >فصل پنجم وششم
Authentication
استاندارد 802.11 دو روش برای احراز هویت کاربرانی که درخواست اتصال به شبکهی بیسیم را به نقاط دسترسی ارسال میکنند، دارد که یک روش بر مبنای رمزنگاریست و دیگری از رمزنگاری استفاده نمیکند.
یک روش از رمزنگاری RC4 استفاده میکند و روش دیگر از هیچ تکنیک رمزنگارییی استفاده نمیکند.
..............................................
Authentication بدون رمزنگاری
Authentication بدون رمزنگاری(Open System Authentication)
در روشی که مبتنی بر رمزنگاری نیست، دو روش برای تشخیص هویت مخدوم وجود دارد. در هر دو روش مخدومِ متقاضی پیوستن به شبکه، درخواست ارسال هویت از سوی نقطهی دسترسی را با پیامی حاوی یک SSID (Service Set Identifier) پاسخ میدهد.
در روش اول که به Open System Authentication موسوم است، یک SSID خالی نیز برای دریافت اجازهی اتصال به شبکه کفایت میکند. در واقع در این روش تمامی مخدومهایی که تقاضای پیوستن به شبکه را به نقاط دسترسی ارسال میکنند با پاسخ مثبت روبهرو میشوند و تنها آدرس آنها توسط نقطهی دسترسی نگاهداری میشود. بههمین دلیل به این روش NULL Authentication نیز اطلاق میشود.
در روش دوم از این نوع، بازهم یک SSID به نقطهی دسترسی ارسال میگردد با این تفاوت که اجازهی اتصال به شبکه تنها در صورتی از سوی نقطهی دسترسی صادر میگردد که SSIDی ارسال شده جزو SSIDهای مجاز برای دسترسی به شبکه باشند. این روش به Closed System Authentication موسوم است.
نکتهیی که در این میان اهمیت بسیاری دارد، توجه به سطح امنیتیست که این روش در اختیار ما میگذارد. این دو روش عملاً روش امنی از احراز هویت را ارایه نمیدهند و عملاً تنها راهی برای آگاهی نسبی و نه قطعی از هویت درخواستکننده هستند. با این وصف از آنجاییکه امنیت در این حالات تضمین شده نیست و معمولاً حملات موفق بسیاری، حتی توسط نفوذگران کمتجربه و مبتدی، به شبکههایی که بر اساس این روشها عمل میکنند، رخ میدهد، لذا این دو روش تنها در حالتی کاربرد دارند که یا شبکهیی در حال ایجاد است که حاوی اطلاعات حیاتی نیست، یا احتمال رخداد حمله به آن بسیار کم است. هرچند که با توجه پوشش نسبتاً گستردهی یک شبکهی بیسیم – که مانند شبکههای سیمی امکان محدودسازی دسترسی به صورت فیزیکی بسیار دشوار است – اطمینان از شانس پایین رخدادن حملات نیز خود تضمینی ندارد.
.................................................
Authentication با رمزنگاری RC4
(shared key authentication )
این روش که به روش «کلید مشترک» نیز موسوم است، تکنیکی کلاسیک است که بر اساس آن، پس از اطمینان از اینکه مخدوم از کلیدی سری آگاه است، هویتش تأیید میشود.
در این روش، نقطهی دسترسی (AP) یک رشتهی تصادفی تولید کرده و آنرا به مخدوم میفرستد. مخدوم این رشتهی تصادفی را با کلیدی از پیش تعیین شده (که کلید WEP نیز نامیده میشود) رمز میکند و حاصل را برای نقطهی دسترسی ارسال میکند. نقطهی دسترسی به روش معکوس پیام دریافتی را رمزگشایی کرده و با رشتهی ارسال شده مقایسه میکند. در صورت همسانی این دو پیام، نقطهی دسترسی از اینکه مخدوم کلید صحیحی را در اختیار دارد اطمینان حاصل میکند. روش رمزنگاری و رمزگشایی در این تبادل روش RC4 است.
در این میان با فرض اینکه رمزنگاری RC4 را روشی کاملاً مطمئن بدانیم، دو خطر در کمین این روش است :
الف) در این روش تنها نقطهی دسترسیست که از هویت مخدوم اطمینان حاصل میکند. به بیان دیگر مخدوم هیچ دلیلی در اختیار ندارد که بداند نقطهی دسترسییی که با آن در حال تبادل دادههای رمزیست نقطهی دسترسی اصلیست.
ب) تمامی روشهایی که مانند این روش بر پایهی سئوال و جواب بین دو طرف، با هدف احراز هویت یا تبادل اطلاعات حیاتی، قرار دارند با حملاتی تحت عنوان man-in-the-middle در خطر هستند. در این دسته از حملات نفوذگر میان دو طرف قرار میگیرد و بهگونهیی هریک از دو طرف را گمراه میکند.
.................................................. ...
.................................................. .
.................................................. .................................................
سرویس Privacy یا confidentiality
این سرویس که در حوزههای دیگر امنیتی اغلب به عنوان Confidentiality از آن یاد میگردد بهمعنای حفظ امنیت و محرمانه نگاهداشتن اطلاعات کاربر یا گرههای در حال تبادل اطلاعات با یکدیگر است. برای رعایت محرمانهگی عموماً از تکنیکهای رمزنگاری استفاده میگردد، بهگونهییکه در صورت شنود اطلاعات در حال تبادل، این اطلاعات بدون داشتن کلیدهای رمز، قابل رمزگشایی نبوده و لذا برای شنودگر غیرقابل سوء استفاده است.
در استاندارد 802.11b، از تکنیکهای رمزنگاری WEP استفاده میگردد که برپایهی RC4 است. RC4 یک الگوریتم رمزنگاری متقارن است که در آن یک رشتهی نیمه تصادفی تولید میگردد و توسط آن کل داده رمز میشود. این رمزنگاری بر روی تمام بستهی اطلاعاتی پیاده میشود. بهبیان دیگر دادههای تمامی لایههای بالای اتصال بیسیم نیز توسط این روش رمز میگردند، از IP گرفته تا لایههای بالاتری مانند HTTP. از آنجایی که این روش عملاً اصلیترین بخش از اعمال سیاستهای امنیتی در شبکههای محلی بیسیم مبتنی بر استاندارد 802.11b است، معمولاً به کل پروسهی امنسازی اطلاعات در این استاندارد بهاختصار WEP گفته میشود.
کلیدهای WEP اندازههایی از ۴۰ بیت تا ۱۰۴ بیت میتوانند داشته باشند. این کلیدها با IV (مخفف Initialization Vector یا بردار اولیه ) ۲۴ بیتی ترکیب شده و یک کلید ۱۲۸ بیتی RC4 را تشکیل میدهند. طبیعتاً هرچه اندازهی کلید بزرگتر باشد امنیت اطلاعات بالاتر است. تحقیقات نشان میدهد که استفاده از کلیدهایی با اندازهی ۸۰ بیت یا بالاتر عملاً استفاده از تکنیک brute-force را برای شکستن رمز غیرممکن میکند. به عبارت دیگر تعداد کلیدهای ممکن برای اندازهی ۸۰ بیت (که تعدد آنها از مرتبهی ۲۴ است) به اندازهیی بالاست که قدرت پردازش سیستمهای رایانهیی کنونی برای شکستن کلیدی مفروض در زمانی معقول کفایت نمیکند.
هرچند که در حال حاضر اکثر شبکههای محلی بیسیم از کلیدهای ۴۰ بیتی برای رمزکردن بستههای اطلاعاتی استفاده میکنند ولی نکتهیی که اخیراً، بر اساس یک سری آزمایشات به دست آمده است، اینست که روش تأمین محرمانهگی توسط WEP در مقابل حملات دیگری، غیر از استفاده از روش brute-force، نیز آسیبپذیر است و این آسیبپذیری ارتباطی به اندازهی کلید استفاده شده ندارد.
.............................................
Integrity
مقصود از Integrity صحت اطلاعات در حین تبادل است و سیاستهای امنیتییی که Integrity را تضمین میکنند روشهایی هستند که امکان تغییر اطلاعات در حین تبادل را به کمترین میزان تقلیل میدهند.
در استاندارد 802.11b نیز سرویس و روشی استفاده میشود که توسط آن امکان تغییر اطلاعات در حال تبادل میان مخدومهای بیسیم و نقاط دسترسی کم میشود. روش مورد نظر استفاده از یک کد CRC است. همانطور که در شکل قبل نیز نشان داده شده است، یک CRC-32 قبل از رمزشدن بسته تولید میشود. در سمت گیرنده، پس از رمزگشایی، CRC دادههای رمزگشایی شده مجدداً محاسبه شده و با CRC نوشته شده در بسته مقایسه میگردد که هرگونه اختلاف میان دو CRC بهمعنای تغییر محتویات بسته در حین تبادل است. متأسفانه این روش نیز مانند روش رمزنگاری توسط RC4، مستقل از اندازهی کلید امنیتی مورد استفاده، در مقابل برخی از حملات شناخته شده آسیبپذیر است.
متأسفانه استاندارد 802.11b هیچ مکانیزمی برای مدیریت کلیدهای امنیتی ندارد و عملاً تمامی عملیاتی که برای حفظ امنیت کلیدها انجام میگیرد باید توسط کسانی که شبکهی بیسیم را نصب میکنند بهصورت دستی پیادهسازی گردد. از آنجایی که این بخش از امنیت یکی از معضلهای اساسی در مبحث رمزنگاری است، با این ضعف عملاً روشهای متعددی برای حمله به شبکههای بیسیم قابل تصور است. این روشها معمولاً بر سهل انگاریهای انجامشده از سوی کاربران و مدیران شبکه مانند تغییرندادن کلید بهصورت مداوم، لودادن کلید، استفاده از کلیدهای تکراری یا کلیدهای پیش فرض کارخانه و دیگر بی توجهی ها نتیجه یی جز درصد نسبتاً بالایی از حملات موفق به شبکههای بیسیم ندارد. این مشکل از شبکههای بزرگتر بیشتر خود را نشان میدهد. حتا با فرض تلاش برای جلوگیری از رخداد چنین سهلانگاریهایی، زمانی که تعداد مخدومهای شبکه از حدی میگذرد عملاً کنترلکردن این تعداد بالا بسیار دشوار شده و گهگاه خطاهایی در گوشه و کنار این شبکهی نسبتاً بزرگ رخ می دهد که همان باعث رخنه در کل شبکه میشود.
Mohamad
02-21-2010, 01:56 PM
آموزش شبكه هاي بي سيم - Wireless Network >فصل پنجم وششم
Authentication
استاندارد 802.11 دو روش برای احراز هویت کاربرانی که درخواست اتصال به شبکهی بیسیم را به نقاط دسترسی ارسال میکنند، دارد که یک روش بر مبنای رمزنگاریست و دیگری از رمزنگاری استفاده نمیکند.
یک روش از رمزنگاری RC4 استفاده میکند و روش دیگر از هیچ تکنیک رمزنگارییی استفاده نمیکند.
..............................................
Authentication بدون رمزنگاری
Authentication بدون رمزنگاری(Open System Authentication)
در روشی که مبتنی بر رمزنگاری نیست، دو روش برای تشخیص هویت مخدوم وجود دارد. در هر دو روش مخدومِ متقاضی پیوستن به شبکه، درخواست ارسال هویت از سوی نقطهی دسترسی را با پیامی حاوی یک SSID (Service Set Identifier) پاسخ میدهد.
در روش اول که به Open System Authentication موسوم است، یک SSID خالی نیز برای دریافت اجازهی اتصال به شبکه کفایت میکند. در واقع در این روش تمامی مخدومهایی که تقاضای پیوستن به شبکه را به نقاط دسترسی ارسال میکنند با پاسخ مثبت روبهرو میشوند و تنها آدرس آنها توسط نقطهی دسترسی نگاهداری میشود. بههمین دلیل به این روش NULL Authentication نیز اطلاق میشود.
در روش دوم از این نوع، بازهم یک SSID به نقطهی دسترسی ارسال میگردد با این تفاوت که اجازهی اتصال به شبکه تنها در صورتی از سوی نقطهی دسترسی صادر میگردد که SSIDی ارسال شده جزو SSIDهای مجاز برای دسترسی به شبکه باشند. این روش به Closed System Authentication موسوم است.
نکتهیی که در این میان اهمیت بسیاری دارد، توجه به سطح امنیتیست که این روش در اختیار ما میگذارد. این دو روش عملاً روش امنی از احراز هویت را ارایه نمیدهند و عملاً تنها راهی برای آگاهی نسبی و نه قطعی از هویت درخواستکننده هستند. با این وصف از آنجاییکه امنیت در این حالات تضمین شده نیست و معمولاً حملات موفق بسیاری، حتی توسط نفوذگران کمتجربه و مبتدی، به شبکههایی که بر اساس این روشها عمل میکنند، رخ میدهد، لذا این دو روش تنها در حالتی کاربرد دارند که یا شبکهیی در حال ایجاد است که حاوی اطلاعات حیاتی نیست، یا احتمال رخداد حمله به آن بسیار کم است. هرچند که با توجه پوشش نسبتاً گستردهی یک شبکهی بیسیم – که مانند شبکههای سیمی امکان محدودسازی دسترسی به صورت فیزیکی بسیار دشوار است – اطمینان از شانس پایین رخدادن حملات نیز خود تضمینی ندارد.
.................................................
Authentication با رمزنگاری RC4
(shared key authentication )
این روش که به روش «کلید مشترک» نیز موسوم است، تکنیکی کلاسیک است که بر اساس آن، پس از اطمینان از اینکه مخدوم از کلیدی سری آگاه است، هویتش تأیید میشود.
در این روش، نقطهی دسترسی (AP) یک رشتهی تصادفی تولید کرده و آنرا به مخدوم میفرستد. مخدوم این رشتهی تصادفی را با کلیدی از پیش تعیین شده (که کلید WEP نیز نامیده میشود) رمز میکند و حاصل را برای نقطهی دسترسی ارسال میکند. نقطهی دسترسی به روش معکوس پیام دریافتی را رمزگشایی کرده و با رشتهی ارسال شده مقایسه میکند. در صورت همسانی این دو پیام، نقطهی دسترسی از اینکه مخدوم کلید صحیحی را در اختیار دارد اطمینان حاصل میکند. روش رمزنگاری و رمزگشایی در این تبادل روش RC4 است.
در این میان با فرض اینکه رمزنگاری RC4 را روشی کاملاً مطمئن بدانیم، دو خطر در کمین این روش است :
الف) در این روش تنها نقطهی دسترسیست که از هویت مخدوم اطمینان حاصل میکند. به بیان دیگر مخدوم هیچ دلیلی در اختیار ندارد که بداند نقطهی دسترسییی که با آن در حال تبادل دادههای رمزیست نقطهی دسترسی اصلیست.
ب) تمامی روشهایی که مانند این روش بر پایهی سئوال و جواب بین دو طرف، با هدف احراز هویت یا تبادل اطلاعات حیاتی، قرار دارند با حملاتی تحت عنوان man-in-the-middle در خطر هستند. در این دسته از حملات نفوذگر میان دو طرف قرار میگیرد و بهگونهیی هریک از دو طرف را گمراه میکند.
.................................................. ...
.................................................. .
.................................................. .................................................
سرویس Privacy یا confidentiality
این سرویس که در حوزههای دیگر امنیتی اغلب به عنوان Confidentiality از آن یاد میگردد بهمعنای حفظ امنیت و محرمانه نگاهداشتن اطلاعات کاربر یا گرههای در حال تبادل اطلاعات با یکدیگر است. برای رعایت محرمانهگی عموماً از تکنیکهای رمزنگاری استفاده میگردد، بهگونهییکه در صورت شنود اطلاعات در حال تبادل، این اطلاعات بدون داشتن کلیدهای رمز، قابل رمزگشایی نبوده و لذا برای شنودگر غیرقابل سوء استفاده است.
در استاندارد 802.11b، از تکنیکهای رمزنگاری WEP استفاده میگردد که برپایهی RC4 است. RC4 یک الگوریتم رمزنگاری متقارن است که در آن یک رشتهی نیمه تصادفی تولید میگردد و توسط آن کل داده رمز میشود. این رمزنگاری بر روی تمام بستهی اطلاعاتی پیاده میشود. بهبیان دیگر دادههای تمامی لایههای بالای اتصال بیسیم نیز توسط این روش رمز میگردند، از IP گرفته تا لایههای بالاتری مانند HTTP. از آنجایی که این روش عملاً اصلیترین بخش از اعمال سیاستهای امنیتی در شبکههای محلی بیسیم مبتنی بر استاندارد 802.11b است، معمولاً به کل پروسهی امنسازی اطلاعات در این استاندارد بهاختصار WEP گفته میشود.
کلیدهای WEP اندازههایی از ۴۰ بیت تا ۱۰۴ بیت میتوانند داشته باشند. این کلیدها با IV (مخفف Initialization Vector یا بردار اولیه ) ۲۴ بیتی ترکیب شده و یک کلید ۱۲۸ بیتی RC4 را تشکیل میدهند. طبیعتاً هرچه اندازهی کلید بزرگتر باشد امنیت اطلاعات بالاتر است. تحقیقات نشان میدهد که استفاده از کلیدهایی با اندازهی ۸۰ بیت یا بالاتر عملاً استفاده از تکنیک brute-force را برای شکستن رمز غیرممکن میکند. به عبارت دیگر تعداد کلیدهای ممکن برای اندازهی ۸۰ بیت (که تعدد آنها از مرتبهی ۲۴ است) به اندازهیی بالاست که قدرت پردازش سیستمهای رایانهیی کنونی برای شکستن کلیدی مفروض در زمانی معقول کفایت نمیکند.
هرچند که در حال حاضر اکثر شبکههای محلی بیسیم از کلیدهای ۴۰ بیتی برای رمزکردن بستههای اطلاعاتی استفاده میکنند ولی نکتهیی که اخیراً، بر اساس یک سری آزمایشات به دست آمده است، اینست که روش تأمین محرمانهگی توسط WEP در مقابل حملات دیگری، غیر از استفاده از روش brute-force، نیز آسیبپذیر است و این آسیبپذیری ارتباطی به اندازهی کلید استفاده شده ندارد.
.............................................
Integrity
مقصود از Integrity صحت اطلاعات در حین تبادل است و سیاستهای امنیتییی که Integrity را تضمین میکنند روشهایی هستند که امکان تغییر اطلاعات در حین تبادل را به کمترین میزان تقلیل میدهند.
در استاندارد 802.11b نیز سرویس و روشی استفاده میشود که توسط آن امکان تغییر اطلاعات در حال تبادل میان مخدومهای بیسیم و نقاط دسترسی کم میشود. روش مورد نظر استفاده از یک کد CRC است. همانطور که در شکل قبل نیز نشان داده شده است، یک CRC-32 قبل از رمزشدن بسته تولید میشود. در سمت گیرنده، پس از رمزگشایی، CRC دادههای رمزگشایی شده مجدداً محاسبه شده و با CRC نوشته شده در بسته مقایسه میگردد که هرگونه اختلاف میان دو CRC بهمعنای تغییر محتویات بسته در حین تبادل است. متأسفانه این روش نیز مانند روش رمزنگاری توسط RC4، مستقل از اندازهی کلید امنیتی مورد استفاده، در مقابل برخی از حملات شناخته شده آسیبپذیر است.
متأسفانه استاندارد 802.11b هیچ مکانیزمی برای مدیریت کلیدهای امنیتی ندارد و عملاً تمامی عملیاتی که برای حفظ امنیت کلیدها انجام میگیرد باید توسط کسانی که شبکهی بیسیم را نصب میکنند بهصورت دستی پیادهسازی گردد. از آنجایی که این بخش از امنیت یکی از معضلهای اساسی در مبحث رمزنگاری است، با این ضعف عملاً روشهای متعددی برای حمله به شبکههای بیسیم قابل تصور است. این روشها معمولاً بر سهل انگاریهای انجامشده از سوی کاربران و مدیران شبکه مانند تغییرندادن کلید بهصورت مداوم، لودادن کلید، استفاده از کلیدهای تکراری یا کلیدهای پیش فرض کارخانه و دیگر بی توجهی ها نتیجه یی جز درصد نسبتاً بالایی از حملات موفق به شبکههای بیسیم ندارد. این مشکل از شبکههای بزرگتر بیشتر خود را نشان میدهد. حتا با فرض تلاش برای جلوگیری از رخداد چنین سهلانگاریهایی، زمانی که تعداد مخدومهای شبکه از حدی میگذرد عملاً کنترلکردن این تعداد بالا بسیار دشوار شده و گهگاه خطاهایی در گوشه و کنار این شبکهی نسبتاً بزرگ رخ می دهد که همان باعث رخنه در کل شبکه میشود.
Mohamad
02-21-2010, 01:58 PM
آموزش شبكه هاي بي سيم - Wireless Network >فصل هفتم
ضعفهای اولیهی امنیتی WEP
در این قسمت به بررسی ضعفهای تکنیکهای امنیتی پایهی استفاده شده در این استاندارد میپردازیم.
همانگونه که گفته شد، عملاً پایهی امنیت در استاندارد 802.11 بر اساس پروتکل WEP استوار است. WEP در حالت استاندارد بر اساس کلیدهای ۴۰ بیتی برای رمزنگاری توسط الگوریتم RC4 استفاده میشود، هرچند که برخی از تولیدکنندهگان نگارشهای خاصی از WEP را با کلیدهایی با تعداد بیتهای بیشتر پیادهسازی کردهاند.
نکتهیی که در این میان اهمیت دارد قائل شدن تمایز میان نسبت بالارفتن امنیت و اندازهی کلیدهاست. با وجود آن که با بالارفتن اندازهی کلید (تا ۱۰۴ بیت) امنیت بالاتر میرود، ولی از آنجاکه این کلیدها توسط کاربران و بر اساس یک کلمهی عبور تعیین میشود، تضمینی نیست که این اندازه تماماً استفاده شود. از سوی دیگر همانطور که در قسمتهای پیشین نیز ذکر شد، دستیابی به این کلیدها فرایند چندان سختی نیست، که در آن صورت دیگر اندازهی کلید اهمیتی ندارد.
متخصصان امنیت بررسیهای بسیاری را برای تعیین حفرههای امنیتی این استاندارد انجام دادهاند که در این راستا خطراتی که ناشی از حملاتی متنوع، شامل حملات غیرفعال و فعال است، تحلیل شده است.
حاصل بررسیهای انجام شده فهرستی از ضعفهای اولیهی این پروتکل است :
۱. استفاده از کلیدهای ثابت WEP
۲. Initialization Vector -IV
...........................................
استفاده از کلیدهای ثابت WEP
یکی از ابتداییترین ضعفها که عموماً در بسیاری از شبکههای محلی بیسیم وجود دارد استفاده از کلیدهای مشابه توسط کاربران برای مدت زمان نسبتاً زیاد است. این ضعف به دلیل نبود یک مکانیزم مدیریت کلید رخ میدهد. برای مثال اگر یک کامپیوتر کیفی یا جیبی که از یک کلید خاص استفاده میکند به سرقت برود یا برای مدت زمانی در دسترس نفوذگر باشد، کلید آن بهراحتی لو رفته و با توجه به تشابه کلید میان بسیاری از ایستگاههای کاری عملاً استفاده از تمامی این ایستگاهها ناامن است.
از سوی دیگر با توجه به مشابه بودن کلید، در هر لحظه کانالهای ارتباطی زیادی توسط یک حمله نفوذپذیر هستند.
..........................................
Initialization Vector - IV
این بردار که یک فیلد ۲۴ بیتی است در قسمت قبل معرفی شده است. این بردار به صورت متنی ساده فرستاده می شود. از آنجاییکه کلیدی که برای رمزنگاری مورد استفاده قرار میگیرد بر اساس IV تولید می شود، محدودهی IV عملاً نشاندهندهی احتمال تکرار آن و در نتیجه احتمال تولید کلیدهای مشابه است. به عبارت دیگر در صورتی که IV کوتاه باشد در مدت زمان کمی میتوان به کلیدهای مشابه دست یافت.
این ضعف در شبکههای شلوغ به مشکلی حاد مبدل میشود. خصوصاً اگر از کارت شبکهی استفاده شده مطمئن نباشیم. بسیاری از کارتهای شبکه از IVهای ثابت استفاده میکنند و بسیاری از کارتهای شبکهی یک تولید کنندهی واحد IVهای مشابه دارند. این خطر بههمراه ترافیک بالا در یک شبکهی شلوغ احتمال تکرار IV در مدت زمانی کوتاه را بالاتر میبرد و در نتیجه کافیست نفوذگر در مدت زمانی معین به ثبت دادههای رمز شدهی شبکه بپردازد و IVهای بستههای اطلاعاتی را ذخیره کند. با ایجاد بانکی از IVهای استفاده شده در یک شبکهی شلوغ احتمال بالایی برای نفوذ به آن شبکه در مدت زمانی نه چندان طولانی وجود خواهد داشت.
ضعف در الگوریتم
از آنجاییکه IV در تمامی بستههای تکرار میشود و بر اساس آن کلید تولید میشود، نفوذگر میتواند با تحلیل و آنالیز تعداد نسبتاً زیادی از IVها و بستههای رمزشده بر اساس کلید تولید شده بر مبنای آن IV، به کلید اصلی دست پیدا کند. این فرایند عملی زمان بر است ولی از آنجاکه احتمال موفقیت در آن وجود دارد لذا به عنوان ضعفی برای این پروتکل محسوب میگردد.
................................................
استفاده از CRC رمز نشده
در پروتکل WEP، کد CRC رمز نمیشود. لذا بستههای تأییدی که از سوی نقاط دسترسی بیسیم بهسوی گیرنده ارسال میشود بر اساس یک CRC رمزنشده ارسال میگردد و تنها در صورتی که نقطهی دسترسی از صحت بسته اطمینان حاصل کند تأیید آن را میفرستد. این ضعف این امکان را فراهم میکند که نفوذگر برای رمزگشایی یک بسته، محتوای آن را تغییر دهد و CRC را نیز به دلیل این که رمز نشده است، بهراحتی عوض کند و منتظر عکسالعمل نقطهی دسترسی بماند که آیا بستهی تأیید را صادر می کند یا خیر.
ضعفهای بیان شده از مهمترین ضعفهای شبکههای بیسیم مبتنی بر پروتکل WEP هستند. نکتهیی که در مورد ضعفهای فوق باید به آن اشاره کرد این است که در میان این ضعفها تنها یکی از آنها (مشکل امنیتی سوم) به ضعف در الگوریتم رمزنگاری باز میگردد و لذا با تغییر الگوریتم رمزنگاری تنها این ضعف است که برطرف میگردد و بقیهی مشکلات امنیتی کماکان به قوت خود باقی هستند.
Mohamad
02-21-2010, 01:59 PM
آموزش شبكه هاي بي سيم - Wireless Network >فصل هشتم
ويژگیهای سيگنالهای طيف گسترده
عبارت طيف گسترده به هر تكنيكی اطلاق میشود كه با استفاده از آن پهنای باند سيگنال ارسالی بسيار بزرگتر از پهنای باند سيگنال اطلاعات باشد. يكی از سوالات مهمی كه با در نظر گرفتن اين تكنيك مطرح میشود آن است كه با توجه به نياز روز افزون به پهنای باند و اهميت آن به عنوان يك منبع با ارزش، چه دليلی برای گسترش طيف سيگنال و مصرف پهنای باند بيشتر وجود دارد. پاسخ به اين سوال در ويژگیهای جالب توجه سيگنالهای طيف گسترده نهفته است. اين ويژگیهای عبارتند از:
- پايين بودن توان چگالی طيف به طوری كه سيگنال اطلاعات برای شنود غير مجاز و نيز در مقايسه با ساير امواج به شكل اعوجاج و پارازيت به نظر میرسد.
- مصونيت بالا در مقابل پارازيت و تداخل
- رسايی با تفكيك پذيری و دقت بالا
- امكان استفاده در CDMA
مزايای فوق كميسيون FCC را بر آن داشت كه در سال 1985 مجوز استفاده از اين سيگنالها را با محدوديت حداكثر توان يك وات در محدوده ISM صادر نمايد.
...............................................
سيگنالهای طيف گسترده با جهش فركانسی
در يك سيستم مبتنی بر جهش فركانسی، فركانس سيگنال حامل به شكلی شبه تصادفی و تحت كنترل يك تركيب كننده تغيير میكند.
PN-CODE= Pseudonoise code - تكنيك FHSS
سيگنال اطلاعات با استفاده از يك تسهيم كننده ديجيتال و با استفاده از روش تسهيم FSK تلفيق میشود. فركانس سيگنال حامل نيز به شكل شبه تصادفی از محدوده فركانسی بزرگتری در مقايسه با سيگنال اطلاعات انتخاب میشود. با توجه به اينكه فركانسهای pn-code با استفاده از يك ثبات انتقالی همراه با پس خور ساخته میشوند، لذا دنباله فركانسی توليد شده توسط آن كاملا تصادفی نيست و به همين خاطر به اين دنباله، شبه تصادفی میگوييم.
- تغيير فركانس سيگنال تسهيم شده به شكل شبه تصادفي
بر اساسی مقررات FCC و سازمانهای قانون گذاری، حداكثر زمان توقف در هر كانال فركانسی 400 ميلی ثانيه است كه برابر با حداقل 2.5 جهش فركانسی در هر ثانيه خواهد بود. در استاندارد 802.11 حداقل فركانس جهش در آمريكای شمالی و اروپا 6 مگاهرتز و در ژاپن 5 مگاهرتز میباشد.
........................
سيگنالهای طيف گسترده با توالی مستقيم
اصل حاكم بر توالی مستقيم، پخش يك سيگنال برروی يك باند فركانسی بزرگتر از طريق تسهيم آن با يك امضاء يا كُد به گونهای است كه نويز و تداخل را به حداقل برساند. برای پخش كردن سيگنال هر بيت واحد با يك كُد تسهيم میشود. در گيرنده نيز سيگنال اوليه با استفاده از همان كد بازسازی میگردد. در استاندارد 802.11 روش مدولاسيون مورد استفاده در سيستمهای DSSS روش تسهيم DPSK است. در اين روش سيگنال اطلاعات به شكل تفاضلی تهسيم میشود. در نتيجه نيازی به فاز مرجع برای بازسازی سيگنال وجود ندارد.
از آنجا كه در استاندارد 802.11 و سيستم DSSS از روش تسهيم DPSK استفاده میشود، دادههای خام به صورت تفاضلی تسهيم شده و ارسال میشوند و در گيرنده نيز يك آشكار ساز تفاضلی سيگنالهای داده را دريافت میكند. در نتيجه نيازی به فاز مرجع برای بازسازی سيگنال وجود ندارد. در روش تسهيم PSK فاز سيگنال حامل با توجه به الگوی بيتی سيگنالهای داده تغيير میكند. به عنوان مثال در تكنيك QPSK دامنه سيگنال حامل ثابت است ولی فاز آن با توجه به بيتهای داده تغيير میكند.
در الگوی مدولاسيون QPSK چهار فاز مختلف مورد استفاده قرار میگيرند و چهار نماد را پديد میآورند. واضح است كه در اين روش تسهيم، دامنه سيگنال ثابت است. در روش تسهيم تفاضلی سيگنال اطلاعات با توجه به ميزان اختلاف فاز و نه مقدار مطلق فاز تسهيم و مخابره میشوند. به عنوان مثال در روش pi/4-DQPSK، چهار مقدار تغيير فاز 3pi/4- ، 3pi/4، pi/4، و-pi/4 است. با توجه به اينكه در روش فوق چهار تغيير فاز به كار رفته است لذا هر نماد میتواند دو بيت را كُدگذاری نمايد.
در روش تسهيم طيف گسترده با توالی مستقيم مشابه تكنيك FH از يك كد شبه تصادفی برای پخش و گسترش سيگنال استفاده میشود. عبارت توالی مستقيم از آنجا به اين روش اطلاق شده است كه در آن سيگنال اطلاعات مستقيماً توسط يك دنباله از كدهای شبه تصادفی تسهيم میشود. در اين تكنيك نرخ بيتی شبه كُد تصادفی، نرخ تراشه ناميده میشود. در استاندارد 802.11 از كُدی موسوم به كُد باركر برای توليد كدها تراشه سيستم DSSS استفاده میشود. مهمترين ويژگی كدهای باركر خاصيت غير تناوبی و غير تكراری آن است كه به واسطه آن يك فيلتر تطبيقی ديجيتال قادر است به راحتی محل كد باركر را در يك دنباله بيتی شناسايی كند.
كدهای باركر از 8 دنباله تشكيل شده است. در تكنيك DSSS كه در استاندارد 802.11 مورد استفاده قرار میگيرد، از كد باركر با طول 11 (N=11) استفاده میشود. اين كد به ازاء يك نماد، شش مرتبه تغيير فاز میدهد و اين بدان معنی است كه سيگنال حامل نيز به ازاء هر نماد 6 مرتبه تغيير فاز خواهد داد.
لازم به يادآوری است كه كاهش پيچيدگی سيستم ناشی از تكنيك تسهيم تفاضلی DPSK به قيمت افزايش نرخ خطای بيتی به ازاء يك نرخ سيگنال به نويز ثابت و مشخص است.
...................................
استفاده مجدد از فركانس
يكی از نكات مهم در طراحی شبكههای بیسيم، طراحی شبكه سلولی به گونهای است كه تداخل فركانسی را تا جای ممكن كاهش دهد.
سه كانال فركانسی F3,F2,F1
با استفاده از يك طراحی شبكه سلولی خاص، تنها با استفاده از سه فركانس متمايز F3,F2,F1 امكان استفاده مجدد از فركانس فراهم شده است.
در اين طراحی به هريك از سلولهای همسايه يك كانال متفاوت اختصاص داده شده است و به اين ترتيب تداخل فركانسی بين سلولهای همسايه به حداقل رسيده است. اين تكنيك همان مفهومی است كه در شبكه تلفنی سلولی يا شبكه تلفن همراه به كار میرود. نكته جالب ديگر آن است كه اين شبكه سلولی به راحتی قابل گسترش است. خوانندگان علاقمند میتوانند دايرههای جديد را در چهار جهت شبكه سلولی شكل فوق با فركانسهای متمايز F1,F2,F3 ترسيم و گسترش دهند.
Mohamad
02-21-2010, 02:03 PM
آموزش شبكه هاي بي سيم - Wireless Network >فصل نهم
مقایسه مدلهای 802.11
استاندارد 802.11b
همزمان با برپايی استاندارد IEEE 802.11b يا به اختصار .11b در سال 1999، انجمن مهندسين برق و الكترونيك تحول قابل توجهی در شبكه سازیهای رايج و مبتنی بر اترنت ارائه كرد. اين استاندارد در زير لايه دسترسی به رسانه از پروتكل CSMA/CA سود میبرد. سه تكنيك راديويی مورد استفاده در لايه فيزيكی اين استاندارد به شرح زير است:
- استفاده از تكنيك راديويی DSSS در باند فركانسی 2.4GHz به همراه روش مدولاسيون CCK
- استفاده از تكنيك راديويی FHSS در باندفركانسی 2.4 GHz به همراه روش مدولاسيون CCK
- استفاده از امواج راديويی مادون قرمز
در استاندار 802.11 اوليه نرخهای ارسال داده 1 و 2 مگابيت در ثانيه است. در حالی كه در استاندارد 802.11b با استفاده از تكنيك CCK و روش تسهيم QPSK نرخ ارسال داده به 5.5 مگابيت در ثانيه افزايش میيابد همچنين با به كارگيری تكنيك DSSS نرخ ارسال داده به 11 مگابيت در ثانيه میرسد.
به طور سنتی اين استاندادر از دو فنّاوری DSSS يا FHSS استفاده میكند. هر دو روش فوق برای ارسال داده با نرخ های 1 و 2 مگابيت در ثانيه مفيد هستند.
در ايالات متحده آمريكا كميسيون فدرال مخابرات يا FCC، مخابره و ارسال فركانس های راديويی را كنترل میكند. اين كميسيون باند فركانس خاصی موسوم به ISM را در محدوده 2.4 GHz تا 2.4835 GHz برای فنّاوریهای راديويی استاندارد IEEE 802.11b اختصاص داده است.
.................................
اثرات فاصله
فاصله از فرستنده برروی كارايی و گذردهی شبكههای بیسيم تاثير قابل توجهی دارد. فواصل رايج در استاندارد 802.11 با توجه به نرخ ارسال داده تغيير میكند و به طور مشخص در پهنای باند 11 Mbps اين فاصله 30 تا 45 متر و در پهنای باند 5.5 Mbps، 40 تا 45 متر و در پهنای باند 2 Mbps ، 75 تا 107 متر است. لازم به يادآوری است كه اين فواصل توسط عوامل ديگری نظير كيفيت و توان سيگنال، محل استقرار فرستنده و گيرند و شرايط فيزيكی و محيطی تغيير میكنند.
در استاندارد 802.11b پروتكلی وجود دارد كه گيرنده بسته را ملزم به ارسال بسته تصديق مینمايد (رجوع كنيد به بخش 2-4 دسترسی به رسانه). توجه داشته باشيد كه اين مكانيزم تصديق علاوه بر مكانيزمهای تصديق رايج در سطح لايه انتقال (نظير آنچه در پروتكل TCP اتفاق میافتد) عمل میكند. در صورتی كه بسته تصديق ظرف مدت زمان مشخصی از طرف گيرنده به فرستنده نرسد، فرستنده فرض میكند كه بسته از دست رفته است و مجدداً آن بسته را ارسال میكند. در صورتی كه اين وضعيت ادامه يابد نرخ ارسال داده نيز كاهش میيابد (Fall Back) تا در نهايت به مقدار 1 Mpbs برسد. در صورتی كه در اين نرخ حداقل نيز فرستنده بستههای تصديق را در زمان مناسب دريافت نكند ارتباط گيرنده را قطع شده تلقی كرده و ديگر بستهای را برای آن گيرنده ارسال نمیكند. به اين ترتيب فاصله نقش مهمی در كارايی (ميزان بهرهوری از شبكه) و گذردهی (تعداد بسته های غيرتكراری ارسال شده در واحد زمان) ايفا میكند.
پل بين شبكهای
بر خلاف انتظار بسياری از كارشناسان شبكههای كامپيوتری، پل بين شبكهای يا Bridging در استاندارد 802.11b پوشش داده نشده است . در پل بين شبكهای امكان اتصال نقطه به نقطه (و يا يك نقطه به چند نقطه) به منظور برقراری ارتباط يك شبكه محلی با يك يا چند شبكه محلی ديگر فراهم میشود. اين كاربرد به خصوص در مواردی كه بخواهيم بدون صرف هزينه كابل كشی (فيبر نوری يا سيم مسی) شبكه محلی دو ساختمان را به يكديگر متصل كنيم بسيار جذاب و مورد نياز میباشد. با وجود اينكه استاندارد 802.11b اين كاربرد را پوشش نمیدهد ولی بسياری از شركتها پيادهسازیهای انحصاری از پل بیسيم را به صورت گسترش و توسعه استاندارد 802.11b ارائه كردهاند. پلهای بیسيم نيز توسط مقررات FCC كنترل میشوند و گذردهی مؤثر يا به عبارت ديگر توان مؤثر ساطع شده همگرا (EIRP) در اين تجهيزات نبايد از 4 وات بيشتر باشد. بر اساس مقررات FCC توان سيگنالهای ساطع شده در شبكههای محلی نيز نبايد از 1 وات تجاوز نمايد.
...............................................
پديده چند مسيری
در اين پديده مسير و زمان بندی سيگنال در اثر برخورد با موانع و انعكاس تغيير میكند. پياده سازیهای اوليه از استاندارد 802.11b از تكنيك FHSS در لايه فيزيكی استفاده میكردند. از ويژگیهای قابل توجه اين تكنيك مقاومت قابل توجه آن در برابر پديده چند مسيری است. در اين تكنيك از كانال های متعددی (79 كانال) با پهنای باند نسبتاً كوچك استفاده شده و فرستنده و گيرنده به تناوب كانال فركانسی خود را تغيير میدهند. اين تغيير كانال هر 400 ميلی ثانيه بروز میكند لذا مشكل چند مسيری به شكل قابل ملاحظهای منتفی میشود. زيرا گيرنده، سيگنال اصلی (كه سريعتر از سايرين رسيده و عاری از تداخل است) را دريافت كرده و كانال فركانسی خود را عوض میكند و سيگنالهای انعكاسی زمانی به گيرنده میرسد كه گيرنده كانال فركانسی قبلی خود را عوض كرده و در نتيجه توسط گيرنده احساس و دريافت نمیشوند.
........................................
استاندارد 802.11a
استاندارد 802.11a، از باند راديويی جديدی برای شبكههای محلی بیسيم استفاده میكند و پهنای باند شبكههای بیسيم را تا 54 Mbps افزايش میدهد. اين افزايش قابل توجه در پهنای باند مديون تكنيك مدولاسيونی موسوم به OFDM است. نرخهای ارسال داده در استاندارد IEEE 802.11a عبارتند از:6,9,12,18,24,36,48,54 Mbps كه بر اساس استاندارد، پشتيبانی از سرعت های 6,12,24 مگابيت در ثانيه اجباری است. برخی از كارشناسان شبكههای محلی بیسيم، استاندارد IEEE 802.11aرا نسل آينده IEEE 802.11تلقی میكنند و حتی برخی از محصولات مانند تراشههای Atheros وكارتهای شبكه PCMCIA/Cardbus محصول Card Access Inc. استاندارد IEEE 802.11a را پيادهسازی كردهاند. بدون شك اين پهنای باند وسيع و نرخ داده سريع محدوديتهايی را نيز به همراه دارد. در واقع افزايش پهنای باند در استاندارد IEEE 802.11a باعث شده است كه محدوده عملياتی آن در مقايسه با IEEE 802.11/b كاهش يابد. علاوه بر آن به سبب افزايش سربارهای پردازشی در پروتكل، تداخل، و تصحيح خطاها، پهنای باند واقعی به مراتب كمتر از پهنای باند اسمی اين استاندارد است. همچنين در بسياری از كاربردها امكان سنجی و حتی نصب تجهيزات اضافی نيز مورد نياز است كه به تبع آن موجب افزايش قيمتِ زيرساختارِ شبكه بیسيم میشود. زيرا محدوده عملياتی در اين استاندارد كمتر از محدوده عملياتی در استاندارد IEEE 802.11b بوده و به همين خاطر به نقاط دسترسی يا ايستگاه پايه بيشتری نياز خواهيم داشت كه افزايش هزينه زيرساختار را به دنبال دارد. اين استاندارد از باند فركانسی خاصی موسوم به UNII استفاده میكند. اين باند فركانسی به سه قطعه پيوسته فركانسی به شرح زير تقسيم میشود:
UNII-1@5.2GHz
UNII-2@5.7GHz
UNII-3@5.8GHz
يكی از تصورات غلط در زمينه استانداردهای 802.11 اين باور است كه 802.11a قبل از 802.11b مورد بهره برداری واقع شده است. در حقيقت 802.11b نسل دوم استانداردهای بیسيم (پس از 802.11)است و 802.11a نسل سوم از اين مجموعه استاندارد به شمار میرود. استاندارد 802.11a برخلاف ادعای بسياری از فروشندگان تجهيزات بیسيم نمیتواند جايگزين 802.11b شود زيرا لايه فيزيكی مورد استفاده در هريك تفاوت اساسی با ديگری دارد. از سوی ديگر گذردهی (نرخ ارسال داده) و فواصل در هريك متفاوت است.
سه ناحيه عملياتی UNII و نيز توان مجاز تشعشع راديويی از سوی FCC ملاحظه میشود. اين سه ناحيه كاری 12 كانال فركانسی را فراهم میكنند. باند UNII-1 برای كاربردهای فضای بسته، باند UNII-2 برای كاربردهای فضای بسته و باز، و باند UNII-3 برای كاربردهای فضای باز و پل بين شبكهای به كار برده میشوند. اين نواحی فركانسی در ژاپن نيز قابل استفاده هستند. اين استاندارد در حال حاضر در قارهاروپا قابل استفاده نيست. در اروپا HyperLAN2برای شبكههای بیسيم مورد استفاده قرار میگيرد كه به طور مشابه از باند فركانسی 802.11aاستفاده میكند. يكی از نكات جالب توجه در استاندارد 802.11a تعريف كاربردهای پل سازی شبكهای در كاربردهای داخلی و فضای باز است. در واقع اين استاندارد مقررات لازم برای پل سازی و ارتباط بين شبكهای از طريق پل را در كاربردهای داخلی و فضای باز فراهم مینمايد. در يكی تقسيم بندی كلی میتوان ويژگی ها و مزايای 802.11a را در سه محور زير خلاصه نمود.
- افزايش در پهنای باند در مقايسه با استاندارد 802.11b (در استاندارد 802.11a حداكثر پهنای باند 54 Mbps) میباشد.
- استفاده از طيف فركانسی خلوت (باند فركانسی 5 GHz)
استفاده از 12 كانال فركانسی غيرپوشا (سه محدودهفركانسی كه در هريك 4 كانال غيرپوشا وجود دارد)
.......................................
افزايش پهنای باند
استاندارد 802.11a در مقايسه با 802.11b و پهنای باند 11 Mbps حداكر پهنای باند 54 Mbps را فراهم میكند. مهمترين عامل افزايش قابل توجه پهنای باند در اين استاندارد استفاده از تكنيك پيشرفته مدولاسيون، موسوم به OFDM است. تكنيكOFDM يك تكنولوژی (فنـّاوری) تكامل يافته و بالغ در كاربردهای بیسيم به شمار میرود. اين تكنولوژی مقاومت قابل توجهی در برابر تداخل راديويی داشته و تأثير كمتری از پديده چند مسيری میپذيرد. OFDM تحت عناوين مدولاسيون چند حاملی و يا مدولاسيون چندآهنگی گسسته نيز شناخته میشود. اين تكنيك مدولاسيون علاوه بر شبكههای بیسيم در تلويزيونهای ديجيتال (در اروپا، ژاپن، و استراليا) و نيز به عنوان تكنولوژی پايه در خطوط مخابراتی ADSL مورد استفاده قرار میگيرد. آندرو مك كورميك Andrew McCormik از دانشگاه ادينبورو نمايش محاورهای جالبی از اين فناوری گردآوری كرده است
تكنيك OFDM از روش QAM و پردازش سيگنالهای ديجيتال استفاده كرده و سيگنال داده را با فركانسهای دقيق و مشخصی تسهيم میكند. اين فركانسها به گونه ای انتخاب میشوند كه خاصيت تعامد را فراهم كنند و به اين ترتيب عليرغم همپوشانی فركانسی هر يك از فركانس های حامل به تنهايی آشكار میشوند و نيازی به باند محافظت برای فاصله گذاری بين فركانسها نيست.
در كنار افزايش پهنای باند در اين استاندارد فواصل مورد استفاده نيز كاهش میيابند. در واقع باند فركانسی 5 GHz تقريباً دوبرابر باند فركانسی ISM (2.4 GHz) است كه در استاندارد802.11b مورد استفاده قرار میگيرد. محدوده موثر در اين استاندارد با توجه به سازندگان تراشههای بیسيم متفاوت و متغير است ولی به عنوان يك قاعده سرراست میتوان فواصل در اين استاندارد را يك سوم محدوده فركانسی 2.4 GHz (802.11b) در نظر گرفت. در حال حاضر محدوده عملياتی (فاصله از فرستنده) در محصولات مبتنی بر 802.11a و پهنای باند 54 Mbps در حدود 10 تا 15 متر است. اين محدوده در پهنای باند6 Mbps در حدود 61 تا 84 متر افزايش میيابد.
..............................................
طيف فركانسی تميزتر
طيف فركانسی UNII در مقايسه با طيف ISM خلوتتر است و كاربرد ديگری برای طيف UNII به جز شبكههای بیسيم تعريف و تخصيص داده نشده است. در حالی كه در طيف فركانسی ISM تجهيزات بیسيم متعددی نظير تجهيزات پزشكی، اجاق های مايكروويو، تلفنهای بیسيم و نظاير آن وجود دارند. اين تجهيزات بیسيم در باند 2.4 GHz يا طيف ISM هيچگونه تداخلی با تجهيزات باند UNII (تجهيزات بیسيم 802.11a) ندارند.
...............................................
كانالهای غيرپوشا
باند فركانسی UNII ، دوازده كانال منفرد و غير پوشای فركانسی را برای شبكه سازی فراهم میكند. از اين 12 كانال 8 كانال مشخص (UNII-1 , 2) در شبكههای محلی بیسيم مورد استفاده قرار میگيرند. اين ويژگی غيرپوشايی گسترش و پياده سازی شبكههای بیسيم را سادهتر از باند ISM میكند كه در آن تنها 3 كانال غير پوشا از مجموع 11 كانال وجود دارد.
همكاری Wi-Fi
ائتلاف "همكاری اتِرنت بیسيم" يا WECA )كنسرسيومی از شركتهای Cisco, 3Com, Enterasys, Lucent و ساير شركتهای شبكهسازی است. اعضاء WECA از طريق همكاری مشترك تلاش دارند تا قابليت همكاری تجهيزات بیسيم با يكديگر را تضمين نمايند. برنامه گواهينامه Wi-Fi كه توسط اين گروه مطرح شده است نقش كليدی در گسترش و پذيرش استاندارد IEEE 802.11 ايفا میكند. در حال حاضر اين ائتلاف برای بيش از 100 محصول گواهی سازگاری Wi-Fi صادر كرده است و تعداد اين محصولات رو به افزايش است. با گسترش فزآينده محصولات IEEE 802.11a، WECAبرنامه ديگری برای صدور گواهينامه برای اين نوع محصولات نيز ارائه میكند.
...........................................
استاندارد بعدی IEEE 802.11g
اين استاندارد مشابه IEEE 802.11b از باند فركانسی 2.4 GHz (يا طيف ISM) استفاده میكند و از تكنيك OFDM به عنوان روش مدولاسيون بهره میبرد. البته PBCC نيز يكی از روشهای جايگزين و تحت بررسی برای انتخاب تكنيك مدولاسيون در اين استاندارد به شمار میرود. 802.11g از نظر فركانسی، تعداد كانال های غيرپوشا، و توان مشابه 802.11b است. محدودههای عملياتی نيز كم و بيش مشابه هستند با اين تفاوت كه حساسيت OFDM به نويز تاحدودی اين محدوده عملياتی را كاهش میدهد. پهنای باند 54 Mbps يكی از اهداف احتمالی اين استاندارد جديد به شمار میرود. يكی ديگر از مزايای جالب توجه 802.11g سازگاری با 802.11b است. در نتيجه ارتقاء از تجهيزات 802.11b به استاندارد جديد 802.11g امری سرراست خواهد بود.
Mohamad
02-21-2010, 02:04 PM
آموزش شبكه هاي بي سيم - Wireless Network >فصل دهم
معرفی شبکه بلوتوس
این تکنولوژی که شبکه محلی شخصی1 نیز نامیده میشود، از یک بازه کوتاه امواج رادیویی برای ارتباط داخلی بین یک شبکه کوچک بیسیم استفاده میکند. بلوتوس2 همچنین میتواند به عنوان پلی بین شبکههای موجود بکار رود. در واقع اصلیترین هدفی که بلوتوس دنبال میکند امکان برقراری ارتباط بین ابزارهای کاملاً متفاوت است. بعنوان مثال میتوان با Bluetooth بین یک گوشی تلفن همراه و یک PDA ارتباط برقرار کرد. بلوتوس از پهنای باند 2.4 GHz استفاده میکند که نزدیک به پهنای باند دیگر شبکههای بیسیم است.
بلوتوس یک شبکه تک کاره 3 است یعنی از هیچ نقطه دسترسی 4 برای ارتباط بین نودها استفاده نمیشود و تمام نودها مشتری5 هستند. با این حال همواره یک رابطه مستر- اسلیو6 بین نودها وجود دارد. این نوع ارتباط بین نودها یک پیکونت7 را شکل میدهد. در هر پیکونت تا 8 وسیله میتوانند شرکت داشته باشد که یکی از آنها مستر و بقیه اسلیو میشوند یک اسلیو در یک پیکونت میتواند نقش مستر را در پیکونت دیگری بازی کند به این ترتیب زنجیرهای از پیکونتها به وجود میآید که به آن یک اسکاترنت 8 میگویند.
حداکثر میزان فاصله بین دستگاهها بستگی به کلاس شبکه برپاشده دارد که کلاس نیز به نوبه خود بستگی به میزان توان دستگاهها دارد.
مهمترین مزایای شبکههای بلوتوس را میتوان به صورت زیر خلاصه کرد:
- جایگزینی سیم با شبکi بلوتوس در ابزارهای کوچک کامپیوتری مانند موس.
- آسان بودن استراک فایل بین دستگاههای متفاوت مثلاً یک PDA و یک کامپیوتر کیفی.
هماهنگی دستگاههای مجهز به تکنولوژی بلوتوس بدون دخالت کاربر.
- اتصال به اینترنت برای بسیاری از دستگاهها، مثلاً یک گوشی تلفن همراه میتواند به عنوان یک مودم برای یک کامپیوتر کیفی به کار رود.
........................................
مؤلفههای امنیتی در بلوتوس
بلوتوس از پروتکلهای تشخیص هویت9 ، احراز صلاحیت 10 و رمزنگاری؛ مدهای امنیت از جمله امنیت در سطح پیوند11 ؛ کنترل دسترسی جداگانه برای دستگاهها و سرویسها؛ و استفاده از انواع شناسه12 بستگی به نوع دستگاه، حمایت میکند.
امنیت در سطح پیوند تکنیکهایی را برای ساختن یک لایه پیوند امن فراهم میکند. در این تکنیکها با رمزنگاری و تشخیص هویت در سطح پیوند، پیوند امنی بین دستگاههای بلوتوس فراهم میشود.
رمزنگاری و احراز هویت در بلوتوس براساس یک کلید پیوندی13 صورت میگیرد که بین هر دو دستگاه مرتبط با هم وجود دارد. برای تولید این کلید اولین باری که دو دستگاه در صدد ارتباط با یکدیگر بر میآیند، متد Pairing فراخوانده میشود که توسط آن دو دستگاه هویت یکدیگر را احراز کرده و یک کلید مشترک برای برقراری پیوند ایجاد مینمایند.
همچنین دستگاهها برای ارتباط با هم از یک عدد هویت شخصی14 در زمان مقداردهی اولیه ارتباط استفاده میکنند. این عدد در واقع مانند یک رمز عبور برای ارتباط با یک دستگاه بلوتوس عمل میکند.
علاوه بر این بلوتوس از تکنیکی به نام برش فرکانس15 استفاده میکند. در این روش فرکانس ارتباطی بین دو دستگاه براساس الگوس توافقی بین خودشان در محدوده فرکانس مجاز 1600 بار در ثانیه، عوض میشود تا علاوه بر اینکه نویز کمتری در ارتباطات ایجاد شود دست یافتن به داده واقعی رد و بدل شده بین دو دستگاه برای هکرها هم دشوار شود.
.............................................
خطرات امنیتی
موارد و آسیبپذیریهای امنیتی در بلوتوس وجود دارند که باعث میشوند کاربران ترجیح دهند علاوه بر تدابیر امنیتی پیش فرض بلوتوس اقدامات امنیتی بیشتری برای امن کردن شبکه خود بکاربرند. با اینکه استاندارد شبکههای بلوتوس بستری امن را فراهم میسازد اما بسیاری از دستگاههای این شبکه با رعایت نکردن این استاندارد نواقص خطرناکی در احراز هویت و مکانیزهای انتقال اطلاعات خود دارند که شبکه را ناامن میسازد.
لیستی از مهمتریین آسیبها و حملات که در شبکههای بلوتوس وجود دارد به شرح زیر است:
- استراق سمع شبکه از طریق یک دستگاه هک شده درون شبکه شبکههای بلوتوس در برابر حملات منع سرویس16 آسیبپذیرند. هکرها میتوانند به وسیله دستگاههایی که قادرند امواجی در فرکانس 2.4 GHz بفرستند، ترافیک کاذب در شبکه بوجود آورند.
- حمله SNARF
- حملات در پشتی
- حمله Blue Jacking که بسیار شبیه حمله سرریز 17 در شبکههای معمولی است.
- آسیبپذیری کاربر مجاز شبکه
..................................................
مقابله با خطرات
اقدامات مدیریتی: مدیران شبکهها با سیاستگذاری و وضع قوانینی، نحوه استفاده کاربران از شبکه و مسئولیتهای آنان را مشخص کنند.
پیکربندی درست شبکه: مدیران شبکهها باید اطمینان پیدا کنند که تمام دستگاهها از کد هویت شخصی برای احراز هویت استفاده میکنند. همچنین در لایه کاربرد حفاظت برنامهها باید با کلمه عبور تأمین گردد.
نظارت اضافی بر شبکه: بعضی برنامههای کاربردی تولید شدهاند که امنیت شبکههای بلوتوس را کنترل میکنند و امنیت بیشتری را برای این شبکهها فراهم میآورند. یکی از این برنامهها Blue Watch میباشد که برای محیط ویندوز طراحی شده است.
( Bluetooth در واقع نام پادشاه قدرتمند وایکینگها در قرن دهم میلادی است که سبب اتحاد بین آنها شد).
vBulletin v4.2.5, Copyright ©2000-2024, Jelsoft Enterprises Ltd.