PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : همجوشی هسته ای



M.A.H.S.A
08-27-2011, 02:44 PM
از دیرباز آرزوی بشر دستیابی به منبعی از انرژی بوده که علاوه بر آنکه بتواند مدت مدیدی از آن استفاده کند تولید پسماندهای خطر ناک نیز در پی نداشته باشد.اکنون در هزاره سوم میلادی این آرزوی به ظاهر دست نیافتنی کم کم به واقعیت می پیوندد.
به نام خدای متعال که منزه است از شرک مشرکان
از دیرباز آرزوی بشر دستیابی به منبعی از انرژی بوده که علاوه بر آنکه بتواند مدت مدیدی از آن استفاده کند تولید پسماندهای خطر ناک نیز در پی نداشته باشد.اکنون در هزاره سوم میلادی این آرزوی به ظاهر دست نیافتنی کم کم به واقعیت می پیوندد.اکنون بشر خود را آماده می کند تا با ساخت اولین رآکتور گرما هسته ای (همجوشی هسته ای)آرزوی نیاکان خود را تحقق بخشد.سوختی پاک و ارزان به نام هیدروژن,انرژی تولیدی ای سرشار و پسماندی بسیار پاک به نام هلیوم.
اکنون می پردازیم به واکنشهای گرما هسته ای راهکارهای استفاده از آن.
● خورشید و ستارگان:
سالهاست که دانشمندان واکنشی را که در خورشید و ستارگان رخ داده و در آن انرژی تولید می کند کشف کرده اند.این واکنش عبارت است از ترکیب (برخورد) هسته های چهار اتم هیدروژن معمولی و تولید یک هسته اتم هلیوم.اما مشکلی سر راه این نظریه است.
بالا ترین دمایی که در خورشید وجود دارد مربوط به مرکز آن است که برابر ۱۵ضرب در ۱۰ به توان۶ می باشد.در حالی که در ستارگان بزرگتر این دما به ۲۰ ضرب در ده به توان ۶ می رسد.به همین خاطر تصور بر این است که آن واکنش معروف ترکیب چهار اتم هیدروژن معمولی وتولید یک اتم هلیم در سایر ستارگان بزرگ نیست که باعث تولید انرژی می شود.بلکه احتمالا چرخه کربن در آنها به کمک آمده و کوره آنها را روشن نگه می دارد.
منظور از چرخه کربن آن چرخه ای نیست که روی زمین اتفاق می افتد.بلکه به این صورت است که ابتدا یک اتم هیدروژن معمولی با یک اتم کربنC۱۲ترکیب می شود(همجوشی) و یک اتم N۱۳ به علاوه یک واحد گاما را آزاد می کند.بعد این اتم با یک واپاشی به یک اتمC۱۳به علاوه یک پوزیترون ویک نوترینو تبدیل می شود.بعد اینC۱۳دوباره با یک اتم هیدروژن ترکیب می شود وN۱۴و یک واحد گاما حاصل می شود.دوباره در اثر ترکیب این نیتروژن با یک هیدروژن معمولی اتمO۱۵و یک واحد گاما تولید می شود.O۱۵واپاشی کرده و N۱۵به علاوه یک پوزیترون ویک نوترینو را بوجود میاورد.و دست آخر با ترکیب N۱۵با یک هیدروژن معمولیC۱۲به علاوه یک اتم هلیوم بدست می آید.
دیدید که در این چرخه C۱۲نه مصرف شد و نه به وجود آمد بلکه فقط نقش کاتالیزور را داشت.این واکنشها به ترتیب و پشت سر هم انجام می شوند.و واکنش اصلی همان تبدیل چهار اتم هیدروژن به یک اتم هلیوم است.مزیت چرخه کربن این است که سرعت کار را خیلی بالا می برد. ولی اشکالی که دارد این است که در دمای حد اقل۲۰ ضرب در ده به توان۶ شروع می شود.بنا بر این احتمال زیادی میرود که در ستاره های بزرگتر چرخه کربن باعث تولید انرژی می شود.
● محصور سازی
یک تعریف ساده و پایه ای از همجوشی عبارت است از فرو رفتن هسته های چند اتم سبکتر و تشکیل یک هسته سنگینتر.مثلا واکنش کلی همجوشی که در خورشید رخ میدهد عبارت است از برخورد هسته های چهاراتم هیدروژن وتبدیل آنها به یک اتم هلیوم .
تا اینجا ساده به نظر میرسد ولی مشکلی اساسی سر راه است;می دانیدهسته ازذرات ریزی تشکیل شده است که پروتون ونوترون جزءلاینفک آن هستند.نوترون بدون بار وپروتون بابارمثبت که سایربارهای مثبت رابه شدت ازخودمیراند.مشکل مشخص شد؟ بله…اگرپروتونها(هسته های هیدروژن)یکدیگررادفع میکنندچگونه میتوان آنهارادرهمجوشی شرکت داد؟
همانطورکه حدس زدید راه حل اساسی آن است که به این پروتونهاآنقدرانرژی بدهیم که انرژی جنبشی آنهابیشترازنیروی دافعه کولنی آنهاشود و پروتونها بتوانند به اندازه کافی به هم نزدیک شوند.حال چگونه این انرژی جنبشی را تولید کنیم؟گرما راه حل خوبیست.در اثر افزایش دما جنب و جوش وبه عبارت دیگرانرژی جنبشی ذرات بیشتر و بیشتر میشود به طوری که تعداد برخوردها و شدت آنها بیشتر و بیشتر میشود.به نظر شما آیا دیگر مشکلی وجود ندارد؟ خیر,مسئله اساسیتری سر راه است.
یک سماور پر از آب را تصور کنید.وقتی سماور را روشن می کنید با این کار به آب درون سماور گرما میدهید(انرژی منتقل می کنید).در اثر این انتقال انرژی دمای آب رفته رفته بالاتر می رود و به عبارتی جنب و جوش مولکولهای آب زیاد می شود.در این حالت بین مولکولهای آب برخوردهایی پدید می آید.هر مولکول که از شعله(یا المنت یا هر چیز دیگری)مقداری انرژی دریافت کرده است آنقدر جنب و جوش می کند تا بالاخره (به علت محدود بودن محیط سماور و آب)انرژی خود رابه دیگری بدهد.
مولکول بعدی نیز به نوبه خود همین عمل را انجام میدهد.بدین ترتیب رفته رفته انرژی منبع گرما در تمام آب پخش می شود و دمای آب بالا میرود.خوب یک سوال:آیا وقتی بدنه سماور را لمس می کنیم هیچ گرمایی حس نمی کنیم؟…بله حس میکنیم.دلیلش هم که روشن است.برخورد مولکولهای پر انرژی آب با بدنه سماور و انتقال انرژی خود به آن.هدف ما از روشن کردن سماور گرم کردن آب بود نه سماور.امیدوارم تا اینجا پاسخ اولین مشکل اساسی بر سر راه همجوشی را دریافت کرده باشید.
بله اگر اگر با صرف هزینه و زحمت بالا سوخت را به دمایی معادل میلیونها درجه کلوین برسانیم آیا این اتمها آنقدر صبر خواهند کرد تا با دیگر اتمها وارد واکنش شوند یا در اولین فرصت انرژی بالای خود را به دیواره داده وآن را نا بود میکند؟(...شما بودید چه می کردید؟؟؟...).بنابر این نیاز به ((محصور سازی))داریم;یعنی باید به طریقی اجازه ندهیم که این گرما به دیواره منتقل شود.
● رسیدن به دمای بالا:
شروع واکنش همجوشی به دمای بسیار بالایی نیازمند است.درست است که دمای پانزده میلیون درجه دمای بسیار بالایست و تصور بوجود آوردنش روی زمین مشکل و کمی هم وحشتناک می باشد ولی معمولا در زندگی روزمره دور و برمان دماهای خیلی بالایی وجود دارند و ما از آنها غافلیم.مثلا وقتی در اثر اتصالی سیمهای برق داخل جعبه تقسیم میسوزد وشما صدای جرقه آنرا میشنوید و پس از بررسی متوجه می شوید که کاملا ذوب شده فقط به خاطر دمای وحشتناکی بوده که آن تو به وجود آمده.شاید باور نکنید ولی این دما به حدود سی-چهل هزار درجه کلوین میرسد.البته این دما برای همجوشی حکم طفل نی سواری را دارد.
یا اینکه می توانیم با استفاده از ولتاژهای بسیار بالا قوسهای الکتریکی را از درون لوله های مویین عبور بدهیم.به این ترتیب دمای هوای داخل لوله که اکنون به پلاسما تبدیل شده به نزدیک چند میلیون درجه می رسد.(که باز هم برای همجوشی کم است).یکی از بهترین راهها استفاده از لیزر است.می دانید که لیزرهایی با توانهای بسیار بالا ساخته شده اند.
مثلا نوعی از لیزر به نام لیزر نوا(NOVA)می تواند در مدت کوتاهی انرژی ای معادل ده به توان پنج ژول تولید کند.اما بازهم در کنار هر مزیت معایبی هست.مثلا این لیزر تبعا انرژی زیادی مصرف میکند که حتی با صرف نظر از آن مشکل دیگری هست که میگوید اگر انرژی تولیدی لیزر در آن مدت کوتاه باید تحویل داده بشود پس برای برقرار ماندن معیار لاوسن (حالا که مدت زمان محصور سازی پایین آمده)باید چگالی بالا تر برود.که در این مورد از تراکم و چگالی جامد هم بالا تر میرود.
● انواع واکنشها:
برای بهینه سازی کار رآکتورهای همجوشی و افزایش توان خروجی آنها راههای متعددی وجود دارد.یکی از این راهها انتخاب نوع واکنشیست که قرار است در رآکتور انجام بشود.
ظبق تصویر زیر نوعی از واکنش همجوشی بصورتیست که در آن دو هسته سبک با یکدیگر واکنش داده و یک هسته سنگین تر را بوجود میاورند.یعنی حاصل ترکیب دو هسته دوتریم و تولید یک هسته ترتیم به علاوه یک هسته هیدروژن معمولیست. این واکنش انرژی ده می باشد.چون تفاوت انرژی بستگی هسته سنگین تر وهسته های سبکتر مقداری منفیست.
در این واکنش مقدار انرژی ای تولیدی برابر۴MeVمی باشد.
قبلا گفته شد که باید برای انجام همجوشی هسته ها به اندازه کافی به هم نزدیک بشوند.این مقدار کافی حدودا معادل۳fmمی باشد.چون در این فاصله ها انرژی پتانسیل الکترواسناتیکی دو دوترون در حدود ۰.۵MeVهست پس می توانیم با این مقدار انرژی دادن به یکی از دوترونها دافعه کولنی بین دوترونها ر شکسته و واکنش را شروع کنیم که بعد از انجام مقدار۴.۵MeVتولید می شود.(۰.۵MeVانرژی جنبشی به علاوه ۴MeVانرژی آزاد شده)
همانطور که می بینید بهترین گزینه واکنش سوم می باشد
می توانیم رآکتور خود را طوری طراحی کنیم که دور دیواره بیرونی آن لیتیم مایع تحت فشار جریان داشته باشد.این لیتیم مایع گرمای تولیدی اضافی را از واکنش گرفته و به آب منتقل می کند و با تبدیل آن به بخار باعث می شود که توربین و ژنراتور به حرکت درآیند و برق تولید بشود.
● اما چرا لیتیم؟
قبلا دیدید که مقرون به صرفه ترین واکنش در رآکتور همجوشی واکنش دوتریم . ترتیم است.در این واکنش دیدید که یک نوترون پر انرژی تولید می شد.این مساله یعنی نوترون زایی می تواند سبب تضعیف بخشهایی از رآکتور شود.از طرفی برای محیط زیست و مخصوصا سلامتی کسانی که در اطراف رآکتور فعالیت می کنند بسیار مضر است.اما اگر لیتیم را به عنوان خنک کننده داشته باشیم این جریان لیتیم همچنین نقش مهم کند کنندگی را بازی خواهد کرد.به این صورت که با نوترون اضافی تولید شده در واکنش ترکیب شده و سوخت گران قیمت و بسیار کمیاب رآکتور رو که همان ترتیم است تولید می کند.واکنش دقیق آن به شکل زیر است.البته در این مورد باید ضخامت لیتیم مایع در جریان حداقل یک متر باشد.
● انواع رآکتور:
توکامک یکی از انواع رآکتورهای همجوشی هسته ایست که عمل محصورسازی را به خوبی انجام میدهد.طرح توکامک در دهه پنجاه میلادی توسط روسها پیشنهاد شد.کلمه توکامک از کلمات "toroidalnaya", "kamera", and "magnitnaya" به معنی " اتاقک مغناطیسی چنبره ای" گرفته شده است.
یکی از دلایل و توجیحاتی که برای چنبره ای بودن محفظه های محصور سازی می شود بیان کرد این است که : توپ پر مویی را تصور کنید که شما قصد دارید موهای این توپ را شانه بزنید. شما هر طور و از هر طرف که بخواهید این کار بکنید همیشه دو طرف از موهای توپ شانه نشده و نامنظم باقی می ماند.حال به جای توپ فرض کنید که یک کره مغناطیسی داریم .میخواهیم که بردارهای میدان در سراسر اطراف این کره یکنواخت و منظم باشند(در واقع همه در یک جهت باشند).بنا به مثال این کار غیر ممکن بوده ونا منظمی در دو طرف کره باعث عدم پایداری محصور ساز می شود.ولی در یک محصور ساز چنبره ای چنین مشکلی وجود ندارد و یکنواختی میدان سراسر محصور ساز(توکامک)باعث پایداری آن می شود.مهم ترین و حیاتی ترین وظیفه یک ابزار همجوشی پایدار نگه داشتن پلاسما است.
اسفرومک نوع دیگری از رآکتورهای همجوشی هسته ایست. اسفرومک نوع دیگری از رآکتورهای همجوشیست که بر خلاف توکامک که چنبره ایست شکلی کروی دارد.البته تفاوت اسفرومک با توکامک در این است که در مرکز اسفرومک هیچ جسم مادی ای وجود ندارد.
اسفرومک متاسفانه با بی مهری مواجه شد و به اندازه توکامک مورد توجه واقع نشد.در حالی که اسفرومک مدت زیادی بعد از توکامک اختراع شد.
در دهه گذشته اغلب تحقیقات در بخش انرژی همجوشی مغناطیسی روی توکامک چنبره ای شکل برای رسیدن به واکنشهای همجوشی در سطح بالا متمرکز شده است.
کار توکامک در ایالات متحده وخارج آن ادامه دارد ولی سازمان دانشمندان انرژی همجوشی در حال بازدید از اسفرومک هستند.
قسمت زیادی از علاقه تجدید شده به پروژه اسفرومک روی تحقیقات فعالی در لاورنس لیورمور در گروهی به نام SSPX (Sustained Spheromak Physics Experiment) متمرکز شده است.SSPX در ۱۴ژوئن ۱۹۹۹ در مراسمی با حضور نماینده ای از DOE و با همکاری دانشمندانی از Sandia و آزمایشگاه ملی لس آلاموس آغاز به کار کرد.SSPX یک سری از از آزمایشات است که برای این طراحی شده که توانایی اسفرومک را در این مورد که اسفرومک چقدر این کیفیت را داراست که پلاسما های داغ سوخت همجوشی را درون خود داشته باشد مشخص کند .
به عقیده رهبر پروژه SSPX آقای David Hill توکامک با دمای بالایی که در آن قابل دسترسیست (بیشتر از ۱۰۰میلیون درجه سلسیوس که بارها بیشتر از دمای مرکز خورشید است)فعلا برنده جریان رهبری پروژه های همجوشی به حساب می آید.با این حال میدانهای مغناطیسی توکامک بوسیله کویل (سیم پیچ) های بیرونی بسیار بزرگ که چنبره رآکتور را کاملا احاطه می کنند تولید می شوند.این کویل های بسیار بزرگ هزینه بسیار زیاد و بی نظمی و اختلالاتی در کار رآکتور خواهند داشت.
در حالی که اسفرومک ها پلاسمای بسیار داغ را در یک سیستم میدان مغناطیسی ساده و فشرده که فقط از یک سری ساده از کویل های کوچک پایدار کننده استفاده میکند بوجود می آورد.میدانهای مغناطیسی قوی لازم درون پلاسما با چیزی که دینام مغناطیسی نامیده می شود تولید می شوند.
● انرژی ده کردن:
می دانید درنوعی از رآکتورهای شکافت هسته ای بوجود آوردن زنجیره واکنشها بوسیله برخورد دادن یک نوترون پر انرژی با هسته یک اتم اورانیم۲۳۵ انجام می شود.به این صورت که وقتی که این نوترون وارد هسته اتم اورانیوم۲۳۵ می شود آن را به یک هسته اورانیم۲۳۶ تبدیل میکند.از آنجا که این هسته ناپایدار است به سرعت واپاشی می کرده و اتمهای سبکتری به همراه سه نوترون پر انرژی دیگر را تولید می کند.
توضیح کاملتر اینکه در هسته های سنگین پایدار مثل اورانیوم بین نیروهای الکترواستاتیکی که مایل هستند ذرات تشکیل دهنده اتم را از هم دور کنند و نیروی هسته ای که آنها را کنار هم نگه میدارد تعادل بسیار حساسی وجود دارد که این تعادل رو می توانیم براحتی و به روشی که گفته شد به هم زده و واکنش شکافت هسته ای را شروع کنیم.واکنش حاصل از یک اتم با تولید کردن سه نوترون پر انرژی دیگر باعث میشود سه اتم اورانیم دیگر وارد واپاشی بشوند.به همین ترتیب واکنش اصطلاحا زنجیره ای میشود.
قدر مسلم یک رآکتور همجوشی ایده آل رآکتوریست که در آن واکنشهای زنجیره ای داریم. در واقع هدف اساسی در راه ساخت رآکتور همجوشی هسته ای زنجیره ای کردن آن است.
اگر قرار باشد که ما در این راه انرژی صرف کنیم تا یک مقدار کمتر از آن را بدست بیاوریم مطمئنا این واکنش نه زنجیره ایست نه مفید.دانشمندان این رشته مفهومی به نام گیرانش را تعریف کرده اند که به معنی این است که مقداری انرژی صرف شروع واکنش کنیم و انرژی بیشتر از سلسله واکنشها بگیریم.در واقع در شرایط گیرانش واکنش زنجیره ای میشود.یعنی نه تنها انرژی تولیدی یک واکنش برای انجام واکنش بعد کافیست بلکه مقدار زیادی از آن هم اضافه است ومیتواند در اختیار ما برای تولید برق قرار بگیرد.
اگر بخواهیم توکامک یا هر وسیله دیگر که همجوشی در آن انجام می شود توان مفید داشته باشد یعنی به ما انرژی بدهد باید شرایط خاصی داشته باشد. برای آنکه احتمال برخورد ذرات(یونهای) نامزد همجوشی بالا برود اولا باید دمای خیلی بالایی درون آن تولید بشود و رآکتور هم بتواند بخوبی دمای بالا را تحمل کند.(این دما در محدوده ده به توان هشت درجه کلوین می باشد!)دوما رآکتور باید این توانایی را داشته باشد که درونش چگالی زیاد از یونها را وارد کرد و سوم اینکه زمان محصور سازی در آن طولانی باشد.
دمای بالا برای آن است که بتوانیم تقریبا مطمئن باشیم که می توانیم از سد محکم پتانسیل کولنی هسته ها بگذریم.چگالی زیاد هم برای این است که هر چه بیشتر احتمال برخورد های کارا بالا برود.
در این مسیر قانونی وجود دارد که نام آن معیار لاوسون است.به کمک این معیار می شود محاسبه کرد که آیا شرایط طوری هست که واکنش به گیرانش برسد یا نه.
معیار لاوسن = باید: مقدار چگالی*مدت زمان محصور سازی > ده به توان۲۰ذره در متر مکعب باشد تا این واکنش به گیرانش برسد(البته بستگی مستقیم با دمای پلاسما دارد)
اما به طور دقیق تر:
برای رسیدن به شرایط مطلوب درواکنشهای گرما هسته ای که در آنها از سوخت دوتریم - ترتیم استفاده می شود دمای پلاسما (T) باید در محدوده یک الی سه ضرب در ده به توان هشت درجه کلوین و زمان محصورسازی(تی ای)(تی اندیس E) باید در حدود یک الی سه ثانیه و چگالی (n) باید حوالی یک الی سه ضرب در ده به توان بیست ذره بر متر مکعب باشد.
برای آغاز به کار رآکتور یعنی برای رسیدن به کمینه دمای حدود ده به توان هشت کلوین باید از وسیله گرما ساز کمکی استفاده کرد.بعد از محترق شدن سوخت مخلوط پلاسما باذرات آلفایی که در اثر احتراق اولیه بوجود اومده اند گرم شده و می توانیم دستگاه کمکی را از مدار خارج کنیم.از آن به بعد سرعت فعالیتهای همجوشی با افزایش دادن چگالی پلاسما افزایش پیدا می کند.با این وجود افزایش چگالی به بالای مرزهای تعیین شده و مطمئن به معنی به هم خوردن پایداری پلاسما و یا اینکه خاموش شدن رآکتور را در پی خواهد داشت یا فاجعه.به عبارت دیگه (در صورت افزایش چگالی پلاسما) برای پایدار کردن پلاسما زمان محصور سازی و دمای احتراق و صد البته حجم پلاسما و نقطه پایداری پلاسما با افزایش چگالی بالا تر رفته و شرایط را برای کار سخت تر می کند.به حالت تعادل در آوردن این ملزمات با شکل بندی رآکتور در کوچکترین اسپکت ریتو که به شکل بندی مغناطیسی آن بستگی دارد مقدور میشود.
نسبت R به a را اسپکت ریتو می گویند.
● خروج پسماندها:
طبق شکل زیر که تصویری از سطح مقطع رآکتور می باشد نحوه کنترل و خارج کردن پسماندهای واکنش که همان هلیوم باشند را مشاهده می کنید.
● واقعیت:
ITERاسم مجموعه ایست که اولین رآکتور همجوشی جهان را که از نوع توکامک خواهد بود در فرانسه خواهند ساخت.این مجموعه متشکل است از کشورهای: روسیه اروپا ژاپن کانادا چین ایالات متحده و جمهوری کره. آنها در این راه از فوق هادی ها برای قسمت های مغناطیسی رآکتور استفاده می کنند.توان خروجی این توکامک ۴۱۰ مگا وات خواهد بود.

منبع: مهرداد صمیمی فر
شبکه فیزیکی هوپا