PDA

توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : مکانیک سیالات (Fluid Mechanics)



Mohamad
03-25-2011, 03:47 PM
مکانیک سیالات یا شاره‌ها دانشی است که به بررسی شاره‌های ساکن و متحرک و برهمکنش میان آنها و اجسام ساکن یا متحرک واقع در داخل یا پیرامون آنها می‌‌پردازد.


مقدمه
با توجه به این که استاتیک و تحرک شاره‌ها در طبیعت ، صنعت و زندگی روزمره انسان کاربرد فراوان دارد، لذا دانشمندان آزمایشهای گسترده و اغلب مبتکرانه را در این زمینه ترتیب می‌‌دهند. این آزمایشها بیشتر کاربرد صنعتی دارند و همین امر سبب ایجاد علمی ‌به نام مکانیک سیالات شده است. لازم به ذکر است که مکانیک سیالات محاسباتی ، در صنایع هوایی و ساخت سفینه‌های فضایی کاربرد دارد، به همین دلیل نیاز به تحقیقات و پژوهشهای علمی ‌و عملی در مکانیک سیالات وجود دارد.
تاریخچه
تا اوایل قرن بیستم مطالعه سیالات را اساسا دو گروه هیدرولیک‌دانان و ریاضیدانان، انجام می‌‌دادند. هیدرولیک‌دانان به صورت تجربی کار می‌‌کردند، در حالی که ریاضیدانان توجه خود را بر روشهای تحلیلی متمرکز کرده بودند. آزمایشهای وسیع و اغلب مبتکرانه گروه اول اطلاعات زیاد و ارزشمندی را در اختیار مهندس کاربردی آن روز قرار می‌‌داد. البته به علت عدم تعمیم یک نظریه کارآمد این نتایج دارای ارزش محدودی بودند. ریاضیدانان نیز با غفلت از اطلاعات تجربی مفروضات آن چنان ساده‌ای را در نظر می‌‌گرفتند که نتایج آنها گاه بطور کامل با واقعیت مغایرت داشت.

محققان برجسته‌ای مانند رینولدز ، فرود ، پرانتل و فن کارمان پی بردند که مطالعه سیالات باید آمیزه‌ای از نظریه و آزمایش باشد. این مطالعات سرآغازی برای رسیدن علم مکانیک سیالات به مرحله کنونی آن بوده است. تسهیلات جدید پژوهش و آزمون که ریاضیدانان و فیزیکدانان ، مهندسان و تکنیسین‌های ماهر در کار جمعی از آن استفاده می‌‌کنند، هر دو دیدگاه را به هم نزدیک می‌‌کند.

Mohamad
03-25-2011, 03:47 PM
سیالات
سیال را ماده‌ای تعریف می‌کنند که وقتی تنش برشی هر چند کوچکی وجود داشته باشد، شکل آن بطور پیوسته تغییر کند. جسم جامد وقتی تحت تاثیر تنش برشی قرار بگیرد، تغییر مکان معینی می‌‌دهد، یا کاملا می‌‌***د. مثلا قطعه جامد وقتی تحت تاثیر تنش برشی τ قرار بگیرد، تغییر شکلی می‌‌دهد که آن را با زاویه δα مشخص کرده‌ایم. اگر به جای آن یک ذره سیال قرار داشت، δα ثابتی وجود نداشت، حتی اگر تنش بینهایت کوچک می‌‌بود. در عوض تا وقتی که تنش برشی τ اعمال شود، یک تعییر شکل پیوسته ادامه دارد.

در موادی مانند پارافین که گاهی آنها را پلاستیک می‌‌نامیم، هر دو نوع تغییر شکل برشی را می‌‌توان یافت که اگر به مقدار معینی کمتر باشد، تغییر مکانهایی مشابه تغییر مکان جسم جامد بوجود می‌‌آید و اگر مقدار تنش برشی بیش از این مقدار باشد، به تغییر شکل پیوسته‌ای مشابه تغییر شکل سیال می‌‌انجامد. مقدار این تنش برشی حد فاصل ، به نوع و حالت ماده بستگی دارد.
استاتیک سیالات
اگر تمام ذرات یک سیال یا بی حرکت باشند، یا نسبت به یک دستگاه مختصات لخت بطور همسان سرعت ثابت داشته باشند، آن سیال را استاتیک در نظر می‌‌گیرند. در سیال ساکن یا سیال در حال حرکت یکنواخت ، از آنجا که سیال نمی‌‌تواند بدون حرکت در برابر تنش برشی مقاومت کند، سیال ساکن لزوما باید بطور کامل از تنش برشی فارغ باشد. سیالی که حرکت یکنواخت دارد، یعنی جریانی که در آن سرعت تمام اجزا یکسان است، نیز فارغ از تنش برشی است، زیرا تغییرات سرعت در تمام جهتها در جریان یکنواخت باید صفر باشد.

Mohamad
03-25-2011, 03:47 PM
جریان با سطح آزاد
جریان با سطح آزاد معمولا به جریانی از مایع گفته می‌‌شود که در آن قسمتی از مرز جریان که سطح آزاد نامیده می‌‌شود، فقط تحت تاثیر شرایط معینی از فشار قرار داشته باشد. حرکت آب در اقیانوسها ، در رودخانه‌ها و همچنین جریان مایعات در لوله‌های نیمه پر ، جریانهایی با سطح آزاد به شمار می‌‌آیند که در آنها فشار جو روی سطح مرز اعمال می‌‌شود. در تحلیل جریان با سطح آزاد ، وضعیت هندسی سطح آزاد از قبل معلوم نیست.

تعیین شکل هندسی مربوطه یک قسمت از جواب است، یعنی با یک شرط مرزی بسیار دشوار مواجهیم. به همین دلیل تحلیلهایی کلی بسیار پیچیده هستند و خارج حوزه این مقاله قرار می‌‌گیرند. اگرچه قسمت اعظم مبحثی که باید بررسی شود، در آغاز فقط برای متخصصان هیدرولیک و مهندسان ساختمان جالب به نظر می‌‌رسد، ولی بعدا خواهید دید که امواج آب و پرش هیدرولیکی ، به ترتیب با موج فشاری و موج شوکی که در جریان تراکم پذیر بررسی می‌‌شوند، قابل قیاس‌اند.
مکانیک سیالات محاسباتی
با ورود کامپیوتر به صحنه ، روش سومی ‌به نام مکانیک سیالات محاسباتی پدید آ‌مده است. وقتی با استفاده از کامپیوتر پارامترهای مختلف مورد نظر را که در برنامه هستند، به اختیار تغییر می‌‌دهیم، با شبیه سازی عددی دینامیک سیالات سر و کار پیدا می‌‌کنیم. به کمک این شیوه پدیده‌های جدید کشف شده‌اند، قبل از آن که به کمک آزمایش و در عمل یافت شده باشند. به این ترتیب می‌‌توان مکانیک سیالات محاسباتی را به عنوان رشته علمی ‌جداگانه‌ای تلقی کرد که مکمل دینامیک سیالات نظری و آزمایشی به شمار می‌‌آید.

صنایع بطور روزمره از کامپیوتر بهره می‌‌گیرند تا از آن برای حل کردن مسائلی مربوط به جریان سیال که برای طراحی وسیله‌هایی چون پمپها ،‍ کمپرسورها و موتورها مورد نیازند، کمک بگیرند. مهندسان هواپیما جریان سه بعدی پیرامون کل هواپیما را در کامپیوتر شبیه سازی می‌‌کنند تا مشخصه‌های پرواز را پیش بینی کنند. در حقیقت قسمت قابل توجهی از بودجه طرح و توسعه غالبا به بررسیهای مبحث دینامیک سیالات محاسباتی اختصاص داده می‌‌شود.

Mohamad
03-25-2011, 03:48 PM
هیدرولیک مایعات


مایعات تقریباً تراکم ناپذیر هستند. این ویژگی سبب شده است که از مایعات به عنوان وسیله مناسبی برای تبدیل و انتقال کار استفاده شود. بنابراین می‌توان از آنها برای طراحی ماشینهایی که در عین سادگی، با نیروی محرک خیلی کم بتواند نیروی مقاوم فوق العاده زیادی را جابجا نماید، استفاده نمود. به این ویژگی و همچنین دانش مطالعه این ویژگی هیدرولیک گفته می‌شود.

امروزه در بسیاری از فرآیندهای صنعتی ، انتقال قدرت آن هم به صورت کم هزینه و با دقت زیاد مورد نظر است در همین راستا بکارگیری سیال تحت فشار در انتقال و کنترل قدرت در تمام شاخه های صنعت رو به گسترش است. استفاده از قدرت سیال به دو شاخه مهم هیدرولیک و نیوماتیک ( که جدیدتر است ) تقسیم می‌شود . از نیوماتیک در مواردی که نیروهای نسبتاً پایین (حدود یک تن) و سرعت های حرکتی بالا مورد نیاز باشد (مانند سیستم‌هایی که در قسمت‌های محرک رباتها بکار می روند) استفاده می‌کنند در صورتیکه کاربردهای سیستم‌های هیدرولیک عمدتاً در مواردی است که قدرتهای بالا و سرعت های کنترل شده دقیق مورد نظر باشد(مانند جک های هیدرولیک ، ترمز و فرمان هیدرولیک و...). حال این سوال پیش میاید که مزایای یک سیستم هیدرولیک یا نیوماتیک نسبت به سایر سیستم‌های مکانیکی یا الکتریکی چیست؟در جواب می توان به موارد زیر اشاره کرد: ۱) طراحی ساده ۲) قابلیت افزایش نیرو ۳) سادگی و دقت کنترل ۴) انعطاف پذیری ۵) راندمان بالا ۶) اطمینان در سیستم های هیدرولیک و نیوماتیک نسبت به سایر سیستم‌های مکانیکی قطعات محرک کمتری وجود دارد و میتوان در هر نقطه به حرکتهای خطی یا دورانی با قدرت بالا و کنترل مناسب دست یافت ، چون انتقال قدرت توسط جریان سیال پر فشار در خطوط انتقال (لوله ها و شیلنگ ها) صورت میگیرد ولی در سیستم‌های مکانیکی دیگر برای انتقال قدرت از اجزایی مانند بادامک ، چرخ دنده ، گاردان ، اهرم ، کلاچ و... استفاده می‌کنند. در این سیستم‌ها میتوان با اعمال نیروی کم به نیروی بالا و دقیق دست یافت همچنین میتوان نیرو های بزرگ خروجی را با اعمال نیروی کمی (مانند بازو بسته کردن شیرها و ...) کنترل نمود. استفاده از شیلنگ های انعطاف پذیر ، سیستم های هیدرولیک و نیوماتیک را به سیستم‌های انعطاف پذیری تبدیل می‌کند که در آنها از محدودیتهای مکانی که برای نصب سیستم‌های دیگر به چشم می خورد خبری نیست. سیستم های هیدرولیک و نیوماتیک به خاطر اصطکاک کم و هزینه پایین از راندمان بالایی برخوردار هستند همچنین با استفاده از شیرهای اطمینان و سوئیچهای فشاری و حرارتی میتوان سیستمی مقاوم در برابر بارهای ناگهانی ، حرارت یا فشار بیش از حد ساخت که نشان از اطمینان بالای این سیستم‌ها دارد. اکنون که به مزایای سیستم های هیدرولیک و نیوماتیک پی بردیم به توضیح ساده ای در مورد طرز کار این سیستم‌ها خواهیم پرداخت. برای انتقال قدرت به یک سیال تحت فشار (تراکم پذیر یا تراکم ناپذیر) احتیاج داریم که توسط پمپ های هیدرولیک میتوان نیروی مکانیکی را تبدیل به قدرت سیال تحت فشار نمود. مرحله بعد انتقال نیرو به نقطه دلخواه است که این وظیفه را لوله ها، شیلنگ ها و بست ها به عهده میگیرند . بعد از کنترل فشار و تعیین جهت جریان توسط شیرها سیال تحت فشار به سمت عملگرها (سیلندرها یا موتور های هیدرولیک ) هدایت می‌شوند تا قدرت سیال به نیروی مکانیکی مورد نیاز(به صورت خطی یا دورانی ) تبدیل شود. اساس کار تمام سیستم های هیدرولیکی و نیوماتیکی بر قانون پاسکال استوار است. ● قانون پاسکال: ۱) فشار سرتاسر سیال در حال س****************** یکسان است .(با صرف نظر از وزن سیال) ۲) در هر لحظه فشار استاتیکی در تمام جهات یکسان است. ۳) فشار سیال در تماس با سطوح بصورت عمودی وارد میگردد. کار سیستم‌های نیوماتیک مشابه سیستم های هیدرولیک است فقط در آن به جای سیال تراکم ناپذیر مانند روغن از سیال تراکم پذیر مانند هوا استفاده می کنند . در سیستم‌های نیوماتیک برای دست یافتن به یک سیال پرفشار ، هوا را توسط یک کمپرسور فشرده کرده تا به فشار دلخواه برسد سپس آنرا در یک مخزن ذخیره می کنند، البته دمای هوا پس از فشرده شدن بشدت بالا میرود که می تواند به قطعات سیستم آسیب برساند لذا هوای فشرده قبل از هدایت به خطوط انتقال قدرت باید خنک شود. به دلیل وجود بخار آب در هوای فشرده و پدیده میعان در فرایند خنک سازی باید از یک واحد بهینه سازی برای خشک کردن هوای پر فشار استفاده کرد. اکنون بعد از آشنایی مختصر با طرز کار سیستم‌های هیدرولیکی و نیوماتیکی به معرفی اجزای یک سیستم هیدرولیکی و نیوماتیکی می پردازیم. ● اجزای تشکیل دهنده سیستم های هیدرولیکی: ۱) مخزن : جهت نگهداری سیال ۲) پمپ : جهت به جریان انداختن سیال در سیستم که توسط الکترو موتور یا ۳) موتور های احتراق داخلی به کار انداخته می شوند. ۴) شیرها : برای کنترل فشار ، جریان و جهت حرکت سیال ۵) عملگرها : جهت تبدیل انرژی سیال تحت فشار به نیروی مکانیکی مولد کار(سیلندرهای هیدرولیک برای ایجاد حرکت خطی و موتور های هیدرولیک برای ایجاد حرکت دورانی). ● اجزای تشکیل دهنده سیستم های نیوماتیکی: ۱) کمپرسور ۲) خنک کننده و خشک کننده هوای تحت فشار ۳) مخزن ذخیره هوای تحت فشار ۴) شیرهای کنترل ۵) عملگرها ● یک مقایسه کلی بین سیستم‌های هیدرولیک و نیوماتیک: ۱) در سیستم‌های نیوماتیک از سیال تراکم پذیر مثل هوا و در سیستم‌های هیدرولیک از سیال تراکم ناپذیر مثل روغن استفاده می کنند. ۲) در سیستم‌های هیدرولیک روغن علاوه بر انتقال قدرت وظیفه روغن کاری قطعات داخلی سیستم را نیز بر عهده دارد ولی در نیوماتیک علاوه بر روغن کاری قطعات، باید رطوبت موجود در هوا را نیز از بین برد ولی در هر دو سیستم سیال باید عاری از هر گونه گرد و غبار و نا خالصی باشد ۳) فشار در سیستم‌های هیدرولیکی بمراتب بیشتر از فشار در سیستم‌های نیوماتیکی می باشد ، حتی در مواقع خاص به ۱۰۰۰ مگا پاسکال هم میرسد ، در نتیجه قطعات سیستم‌های هیدرولیکی باید از مقاومت بیشتری برخوردار باشند. ۴) در سرعت های پایین دقت محرک های نیوماتیکی بسیار نامطلوب است در صورتی که دقت محرک های هیدرولیکی در هر سرعتی رضایت بخش است . ۵) در سیستم‌های نیوماتیکی با سیال هوا نیاز به لوله های بازگشتی و مخزن نگهداری هوا نمی باشد. ۶) سیستم‌های نیوماتیک از بازده کمتری نسبت به سیستم‌های هیدرولیکی برخوردارند.

Mohamad
03-25-2011, 03:48 PM
امروزه در بسیاری از فرآیندهای صنعتی ، انتقال قدرت آن هم به صورت کم هزینه و با دقت زیاد مورد نظر است در همین راستا بکارگیری سیال تحت فشار در انتقال و کنترل قدرت در تمام شاخه های صنعت رو به گسترش است. استفاده از قدرت سیال به دو شاخه مهم هیدرولیک و نیوماتیک ( که جدیدتر است ) تقسیم می‌شود . از نیوماتیک در مواردی که نیروهای نسبتاً پایین (حدود یک تن) و سرعت های حرکتی بالا مورد نیاز باشد (مانند سیستم‌هایی که در قسمت‌های محرک رباتها بکار می روند) استفاده می‌کنند در صورتیکه کاربردهای سیستم‌های هیدرولیک عمدتاً در مواردی است که قدرتهای بالا و سرعت های کنترل شده دقیق مورد نظر باشد(مانند جک های هیدرولیک ، ترمز و فرمان هیدرولیک و...). حال این سوال پیش میاید که مزایای یک سیستم هیدرولیک یا نیوماتیک نسبت به سایر سیستم‌های مکانیکی یا الکتریکی چیست؟در جواب می توان به موارد زیر اشاره کرد: ۱) طراحی ساده ۲) قابلیت افزایش نیرو ۳) سادگی و دقت کنترل ۴) انعطاف پذیری ۵) راندمان بالا ۶) اطمینان در سیستم های هیدرولیک و نیوماتیک نسبت به سایر سیستم‌های مکانیکی قطعات محرک کمتری وجود دارد و میتوان در هر نقطه به حرکتهای خطی یا دورانی با قدرت بالا و کنترل مناسب دست یافت ، چون انتقال قدرت توسط جریان سیال پر فشار در خطوط انتقال (لوله ها و شیلنگ ها) صورت میگیرد ولی در سیستم‌های مکانیکی دیگر برای انتقال قدرت از اجزایی مانند بادامک ، چرخ دنده ، گاردان ، اهرم ، کلاچ و... استفاده می‌کنند. در این سیستم‌ها میتوان با اعمال نیروی کم به نیروی بالا و دقیق دست یافت همچنین میتوان نیرو های بزرگ خروجی را با اعمال نیروی کمی (مانند بازو بسته کردن شیرها و ...) کنترل نمود. استفاده از شیلنگ های انعطاف پذیر ، سیستم های هیدرولیک و نیوماتیک را به سیستم‌های انعطاف پذیری تبدیل می‌کند که در آنها از محدودیتهای مکانی که برای نصب سیستم‌های دیگر به چشم می خورد خبری نیست. سیستم های هیدرولیک و نیوماتیک به خاطر اصطکاک کم و هزینه پایین از راندمان بالایی برخوردار هستند همچنین با استفاده از شیرهای اطمینان و سوئیچهای فشاری و حرارتی میتوان سیستمی مقاوم در برابر بارهای ناگهانی ، حرارت یا فشار بیش از حد ساخت که نشان از اطمینان بالای این سیستم‌ها دارد. اکنون که به مزایای سیستم های هیدرولیک و نیوماتیک پی بردیم به توضیح ساده ای در مورد طرز کار این سیستم‌ها خواهیم پرداخت. برای انتقال قدرت به یک سیال تحت فشار (تراکم پذیر یا تراکم ناپذیر) احتیاج داریم که توسط پمپ های هیدرولیک میتوان نیروی مکانیکی را تبدیل به قدرت سیال تحت فشار نمود. مرحله بعد انتقال نیرو به نقطه دلخواه است که این وظیفه را لوله ها، شیلنگ ها و بست ها به عهده میگیرند . بعد از کنترل فشار و تعیین جهت جریان توسط شیرها سیال تحت فشار به سمت عملگرها (سیلندرها یا موتور های هیدرولیک ) هدایت می‌شوند تا قدرت سیال به نیروی مکانیکی مورد نیاز(به صورت خطی یا دورانی ) تبدیل شود. اساس کار تمام سیستم های هیدرولیکی و نیوماتیکی بر قانون پاسکال استوار است. ● قانون پاسکال: ۱) فشار سرتاسر سیال در حال س****************** یکسان است .(با صرف نظر از وزن سیال) ۲) در هر لحظه فشار استاتیکی در تمام جهات یکسان است. ۳) فشار سیال در تماس با سطوح بصورت عمودی وارد میگردد. کار سیستم‌های نیوماتیک مشابه سیستم های هیدرولیک است فقط در آن به جای سیال تراکم ناپذیر مانند روغن از سیال تراکم پذیر مانند هوا استفاده می کنند . در سیستم‌های نیوماتیک برای دست یافتن به یک سیال پرفشار ، هوا را توسط یک کمپرسور فشرده کرده تا به فشار دلخواه برسد سپس آنرا در یک مخزن ذخیره می کنند، البته دمای هوا پس از فشرده شدن بشدت بالا میرود که می تواند به قطعات سیستم آسیب برساند لذا هوای فشرده قبل از هدایت به خطوط انتقال قدرت باید خنک شود. به دلیل وجود بخار آب در هوای فشرده و پدیده میعان در فرایند خنک سازی باید از یک واحد بهینه سازی برای خشک کردن هوای پر فشار استفاده کرد. اکنون بعد از آشنایی مختصر با طرز کار سیستم‌های هیدرولیکی و نیوماتیکی به معرفی اجزای یک سیستم هیدرولیکی و نیوماتیکی می پردازیم. ● اجزای تشکیل دهنده سیستم های هیدرولیکی: ۱) مخزن : جهت نگهداری سیال ۲) پمپ : جهت به جریان انداختن سیال در سیستم که توسط الکترو موتور یا ۳) موتور های احتراق داخلی به کار انداخته می شوند. ۴) شیرها : برای کنترل فشار ، جریان و جهت حرکت سیال ۵) عملگرها : جهت تبدیل انرژی سیال تحت فشار به نیروی مکانیکی مولد کار(سیلندرهای هیدرولیک برای ایجاد حرکت خطی و موتور های هیدرولیک برای ایجاد حرکت دورانی). ● اجزای تشکیل دهنده سیستم های نیوماتیکی: ۱) کمپرسور ۲) خنک کننده و خشک کننده هوای تحت فشار ۳) مخزن ذخیره هوای تحت فشار ۴) شیرهای کنترل ۵) عملگرها ● یک مقایسه کلی بین سیستم‌های هیدرولیک و نیوماتیک: ۱) در سیستم‌های نیوماتیک از سیال تراکم پذیر مثل هوا و در سیستم‌های هیدرولیک از سیال تراکم ناپذیر مثل روغن استفاده می کنند. ۲) در سیستم‌های هیدرولیک روغن علاوه بر انتقال قدرت وظیفه روغن کاری قطعات داخلی سیستم را نیز بر عهده دارد ولی در نیوماتیک علاوه بر روغن کاری قطعات، باید رطوبت موجود در هوا را نیز از بین برد ولی در هر دو سیستم سیال باید عاری از هر گونه گرد و غبار و نا خالصی باشد ۳) فشار در سیستم‌های هیدرولیکی بمراتب بیشتر از فشار در سیستم‌های نیوماتیکی می باشد ، حتی در مواقع خاص به ۱۰۰۰ مگا پاسکال هم میرسد ، در نتیجه قطعات سیستم‌های هیدرولیکی باید از مقاومت بیشتری برخوردار باشند. ۴) در سرعت های پایین دقت محرک های نیوماتیکی بسیار نامطلوب است در صورتی که دقت محرک های هیدرولیکی در هر سرعتی رضایت بخش است . ۵) در سیستم‌های نیوماتیکی با سیال هوا نیاز به لوله های بازگشتی و مخزن نگهداری هوا نمی باشد. ۶) سیستم‌های نیوماتیک از بازده کمتری نسبت به سیستم‌های هیدرولیکی برخوردارند.

Mohamad
03-25-2011, 03:48 PM
آیرودینامیک


از کوششهای اولیه روی پرواز در زمانهای قدیم که بیشتر بر باورهای افسانه ای پا گرفته اند تا دانش هر چند نا استوار آیرودینامیک بدون توقف می گذریم .
در واقع اولین تعریفهای مفید برای آگاهی از قوانین حاکم بر حرکت جسم در شاره در سده ی شانزدهم به هنگام پایه گذاری مکانیک بیان شد.
گالیله اولین کسی است که در جریان مطالعه ی حرکت آونگ به مقاومت هوا پی برد. او متوجه شد که حرکت آونگ بتدریج کند میشود و کوشید رابطه ی بین سرعت ومقاومت هوا راتعین کند. آزمایش گالیله عبارت بود از دو آونگ همانند که از دو کره ی با وزن یکسان آویزان از نخهای با طول برابر تشکیل میشدند.یکی را به اندازه ی 10 درجه و دیگری را به اندازه ی 160 درجه از وضع قائم منحرف و سپس رها کرد.بعد از مدت معینی تعداد نوسانهایی که آونگها انجام داده بودند با هم برابر بود.
گالیله با توجه به نسبت سرعتها 1 و 16 فکر کرد مقاومت هوا با سرعت متناسب است .
اما تنها نیوتن بود که قانون تناسب مقاومت هوا با مجذور سرعت مجذور ابعاد خطی جسم و چگالی هوا را بیان کرد.
به علاوه این دانشمند انگلیسی اساس کار اتاق دمش را ریخت که سه قرن بعد تحقق یافت.
بعدها برای سرعتهای بالاتر نادرستی متناسب بودن مقاومت هوا با مجذور سرعت به اثبات رسید.در واقع آزمایشهای حرکتهای پرتابی نشان داد که مقاومت هوا در مقابل پیشروی پرتابه ها خیلی بیش از مجذور سرعت افزایش می یابد .
از همان هنگام کوششهای مربوط به پیشبرد هیدرودینامیک و مکانیک نظری سیالات در جریان نیمه دوم قرن هجدهم و تمام قرن نوزدهم به پیشرفت های بزرگی نایل آمد.

Mohamad
03-25-2011, 03:48 PM
نتایج کارهای دانشمندان نامور زمان عبارت بودند از :
برنولی که قضیه مهمی را بیان داشت که بر جریان شاره های غیر قابل تراکم حاکم است و بعدا به قضیه ی برنولی معروف شد.
اویلر که به مطالعه ی هیدرودینامیک علاقه مند شد و بدین طریق توانست چندین قانون بنیادی مکانیک سیالات را اثبات کند و همچنین اوست که نظریه ی مقاومت سیال را روی جسم در حال حرکت بر اساس فشار بیان داشت.
لاپلاس فرمول درست سرعت انتشار صوت در هوا را پیدا و ثابت کرد که سرعت صوت در هوا با جذر دمای مطلق هوا متناسب است.
در جریان قرن نوزدهم برای اولین بار پرتابه ها وارد توپخانه ها شدند وبدین سان مطالعه روی پدیده های فراصوتی آغاز شد.آزمونهای تیراندازی بویژه در فرانسه تا سرعتهای حدود 1500 متربر ثانیه انجام میگرفت.در جریان همین آزمایشها بود که ماخ _فیزیکدان اتریشی_در جسمی که با سرعت فرا صوت حرکت میکرد موجهای شوک را کشف کرد.روش استریوسکوپی مشاهده جریانهای فراصوتی که ماخ آن را ابداع هنوز هم مورد استفاده است .
حدود قرن اخیر اندیشه ی ساخت هواپیماهای دقیقتر مطرح شد و ماکتهای اولیه ی هواپیما بیشتر مدیون مطالعه روی پرواز پرندگان است.
جورج کیلی پروفیلی طراحی کرد که شاید اولین پروفیل بال از روی آن ساخته شده باشد و شکل آن بر اساس برش عرضی ماهی قزل آلا طراحی شده بود.
به موازات این کوششهای نظری نخستین دستگاه های آزمایشهای آیرودینامیکی ساخته و بکار گرفته شد .در سال 1871 ونهام ودر سال 1891 فیلیپ در انگلیس اتاقهای دمش را ساختند.بعدا ژوکوفسکی در روسیه و راتو و ایفل در فرانسه به همین کار پرداختند.ایفل بحق یکی از پیشگامان این راه شد .او روشهای فنی آزمایشی را بنا نهاده است که امروزه نیز از آنها استفاده می شود.ایفل برای اندازه گیری مقاومت هوا روی صفحات تخت در سال 1910 برج معروف ایفل را ساخت.
از این زمان است که بسط نظری آیرودینامیک با ساخت هواپیما دوش به دوش هم پیش میرود.پیشرفت در اولی موجب تکمیل و تصحیح در دومی میشود.
در سال 1920 پرانتل آلمانی نظریه ی پورتانس را بیان کرد و به شرح رفتار جریان هوا پرداخت.

Mohamad
03-25-2011, 03:48 PM
در طول جنگ 1939- 1940 نشانه های اولیه ی ورود به ناحیه ی سرعتهای دور و بر سرعت صوت با هواپیماهای ملخی خیلی سریع مانند اسپیت فایر(سیخ آتش) در جریان خیزهای قائم به ظهور پیوست.ظهور هواپیماهای مجهز به موتورهای واکنشی (جت) این پدیده را خیلی روشن تر کردند و از سال 1945 برنامه های وسیع پژوهشی روی جریانهای سریع نزدیک به سرعت صوت در اتاقهای دمش ریخته شد.نتایج بدست آمده اجازه دادند که شکل و رفتار آیرودینامیکی هواپیماها را در اطراف سرعت صوت تکمیل و تصحیح کنند و به سرعتهای فرا صوتی بزرگ دست یابند.

در طرحهای نظامی سرعت عادی هواپیماها به 3 ماخ میرسد و مطالعه ی آیرودینامیکی هواپیماهای حمل ونقل بازرگانی با همین کیفیت در جریان تکامل است.
تکامل موتورهای ویژه ای که سرعت برخی از آنها به چند هزار کیلومتر در ساعت میرسد به مطالعات پیشرفته تری نیازمند است مسایل جدیدی را مطرح ساخته اند که وجود اتاقهای دمش با تجهیزات کاملتر و شرایط جدید پرواز را ضروریتر میسازند.

Mohamad
03-25-2011, 03:49 PM
نصب پمپ ها در آبرساني


در نصب پمپها بايد همواره سعي نمود پمپ را پائين تر از سطح منبع مكش قرار داده تا فشار مكش مثبت ايجاد گردد، و در صورتيكه اين امر در بعضي از شبكه هاي آبرساني مقدور نباشد، تا آنجائيكه وضع ايستگاههاي پمپاژ اجازه مي دهد بايد سعي نمود پمپ نزديك سطح مايع منبع مكش قرار گيرد تا اختلالات كمتري در كار پمپ ايجادگردد .
مسير لوله كشي بايد مستقيم و از ايجاد خمها و زانوها و لوازمات لوله كشي نه چندان مورد نياز اجتناب ورزيد ، بين زانوئي و محل اتصال مكش بايد لوله مستقيمي بطول لااقل 5 برابر قطر مکش فاصله ايجاد نمود . چرا كه در غيراينصورت فشار مكش نامتعادلي ايجاد شده و يكطرف چشمه پروانه و محفظه مكش پر تر از طرف ديگر گرديده و تلفات هيدروليكي پمپ زياد و راندمان پمپ كم مي گردد .
بايد قطر لوله مكش يك نمره بيشتر از قطر مجراي رانش بوده و عمق مكش بين 5/4 تا 6 متر باشد ، لوله مكش بايد كاملاً آب بندي بوده و از محبوس نمودن هوا در لوله مكش اجتناب ورزيد ، در قسمت اعظم لوله ورودي پمپ ، فشار هوا كمتر از فشار جو بوده و براي مطمئن شدن از آب بندي لوله ورودي بعد از كارگذاري ، يك شعله به قسمتهاي اتصالي نزديك مي كنند در صورتيكه درزي موجود باشد شعله بطرف لوله كشيده مي شود لوله مكش بايد 1 تا 2 متر پائين تر از حداقل سطح آب چاه باشد تا هوا وارد پمپ نگردد در قسمت رانش پمپ شير يك طرفه جهت جلوگيري از حركت معكوس آب و شير تنظيم جهت كم و زياد نمودن آب تعبيه نموده با صدمه اي به پمپ وارد نگردد.
جهت نصب پمپها اصولاً يك شاسي محكم براي موتور و پمپ درنظر گرفته و از ايجاد ناميزاني كه سبب فرسوده شدن بوشهاي اتصال و ياتاقانها و احتمالاً شكستن محور پمپ مي گردد جلوگيري مي شود همواره بايد سعي نمود محور پمپها باموتور محرك آن در كارخانه ميزان شود كه اين ميزان نبايد در اتصال و نصب پمپ بهم بخورد.
معمولاً صفحه اي به ضخامت 5/2تا 4 سانتيمتر بين صفحه زبري پمپ و سطح بالائي فنداسيون در نظر گرفته مي شود كه با ملات سيمان پوشيده شده تا ناصافيهاي بالائي فونداسيون اصلاح و حركت جانبي صفحه زبري پمپ كم شود.
در مسير رانش پمپ ، يك شير دروازه اي و يك سوپاپ كنترل قرار مي دهند ، كار اين سوپاپ حفظ پمپ در مقابل فشارهاي اضافي وارد بر پمپ است. سوپاپ انتهاي لوله مكش بايد لااقل 5/1 متر از سطح مايع مكش پائين تر بوده و پمپ نيز بايد به سطح منبع مكش نزديك باشد .
پمپ و موتور را بايد روي فونداسيون محكمي نگهداشت تا تنظيم آن خراب نگردد در غير اينصورت بوشهاي اتصال محور پمپ و موتور نيز ياتاقانهاي آن خراب و سبب شكستگي محور مي گردد.