توجه ! این یک نسخه آرشیو شده میباشد و در این حالت شما عکسی را مشاهده نمیکنید برای مشاهده کامل متن و عکسها بر روی لینک مقابل کلیک کنید : گزارش کار شیمی
Sara12
11-30-2010, 09:52 PM
عنوان : محلول سازی
هدف آزمایش : تهیه ی محلول با غلظت مشخص توسط نمونه ی جامد و مایع
مقدمه و تئوری :
محلول ؟
محلول ها، مخلوط های همگن اند. محلول ها را اغلب بر اساس حالت فیزیکی آنها طبقه بندی می کنند ؛ محلول های جامد، گازی، و مایع
حلال ؟
معمولاً جزئی از یک محلول را که از لحاظ مقدار بیش از اجزای دیگر است را حلال می نامند. البته کاربرد این واژه اختیاری است و دقت چندانی ندارد. گاهی آسانتر است که جزئی از محلول را با آنکه مقدارش کم است حلال بنامیم. در توصیف محلول های گازی کاربرد واژه های حلال و حل شونده اهمیت چندانی ندارد.
حل شونده ؟
معمولاً جزئی از یک محلول که از لحاظ مقدار کمتر از اجزای دیگر است را حل شونده می نامند.
غلظت ؟
مقدار ماده ی حل شده در مقدار مشخصی حلال یا محلول را گویند.
محلول رقیق: محلولی که غلظت ماده ی حل شده در آن نسبتاً کم باشد.
محلول غلیظ: محلولی که غلظت ماده ی حل شده در آن نسبتاً زیاد باشد.
انحلال پذیری:بیشترین مقدار از یک ماده که در مقدار معینی حلال حل می شود و سیستم پایداری به وجود می آورد.
محلول سیر شده ( اشباع شده ) : محلولی که در آن سرعت حل شدن ماده ی حل شونده ی خالص برابر با سرعت خارج شدن ماده ی حل شده از محلول است. که در نتیجه غلظت ماده ی حل شده، در حال تعادل، ثابت می ماند.
محلول سیر نشده : در این محلول، غلظت ماده ی حل شده، کمتر از غلظت آن در یک محلول سیر شده است.
محلول فوق سیر ( فوق اشباع ) : فقط در صورتی که ماده ی حل شونده جامد باشد، میتوان محلولی تهیه کرد که غلظت ماده ی حل شده در آن بیشتر از غلظت یک محلول سیر شده است. این نوع محلول ها نیم پایدارند و اگر مقدار بسیار کمی از حل شونده به آن افزوده شود، مقدار اضافی رسوب می کند.
○غلظت یک ماده ی حل شده در یک محلول را به شیوه های گوناگون می توان بیان کرد.
انواع غلظت :
- مولاریته (M)
تعداد مول های ماده ی حل شده در یک لیتر از محلول.
مولاریته یکی از پرکاربرد ترین مفاهیم غلظت در شیمی تجزیه می باشد.
این تعریف بر اساس حجم کل محلول استوار است. وقتی غلظت محلول بر حسب مولاریته بیان میشود، محاسبه مقدار ماده حل شده موجود در یک نمونه معین از محلول آسان است. تعداد مولهای جسم حل شده از تقسیم کردن وزن آن بر حسب gr به وزن فرمولی آن (وزن مولکولی ، وزن اتمی ، وزن یونی) بدست میآید.
- درصد وزنی – حجمی (%W/V)
این غلظت برای بیان ترکیب محلولهای آبی رقیق و واکنشگرهای جامد به کار می رود بنابراین یک محلول آبی 5% از نیترات نقره محلولی می باشد که ازحل کردن 5 گرم نیترات نقره درمقدارکافی آب مقطر برای تولید 100 میلی لیتر محلول استفاده شده است.
وزن ماده ی حل شده به گرم
100× ـــــــــــــــــــــــــ ـــــــــــــــــ = W/V %
حجم محلول به میلی لیتر
- نرمالیته (N)
تعداد هم ارز گرم های ( اکی والان های ) ماده ی حل شده در یک لیتر محلول.
نرمالیته ی یک محلول مانند مولاریته با تغییر دما اندکی تغییر میکند.
- گرم بر لیتر (C)
عبارت است از مقدارگرمهای جسم حل شده دریک لیترمحلول.
گرم جسم حل شده
ـــــــــــــــــــــ = C
لیترمحلول
- مولالیته (m)
تعداد مول های ماده ی حل شونده در یک کیلوگرم حلال
تعداد مول های ماده ی حل شونده
ـــــــــــــــــــــــــ ــــــــــــــــ = مولالیته ( m)
وزن حلال بر حسب کیلوگرم
مولالیته یک محلول عبارت است از عدد مولهای حل شده در 1000 گرم حلال. مولالیته یک محلول آبی بسیار رقیق همان مولاریته آن محلول است زیرا 1000 گرم آب تقریبا 1000 گرم حجم اشغال می کند.
-کسر مولی (X)
کسر مولی یک جزء از محلول برابر با نسبت عدّه ی مول های آن جزء بر کل مول های تمام موارد موجود در محلول است.
که در آن کسر مولی A و ,... عده ی مول های C , B , A و ... است. مجموع کسر مولی تمام اجزای موجود در محلول باید 1 باشد.
-درصد وزنی (%W)
درصد وزنی یک ماده حل شده دریک محلول عبارتست از:
گرم های جسم حل شده
100× ـــــــــــــــــــــــــ ـــــــــــــــــــــــــ ــــــــــــــ%W =
گرم های حلال + گرم های جسم حل شده
» روش کار «
وسایل :
بشر 100-ml - هم زن شیشه ای - ظرف توزین – پیپت – دو عدد بالن ژوژه 250-ml – ترازو با دقت 1/0 گرم
مواد : محلول HCl غلیظ ، NaOH جامد
1- بالن حجم سنجی را با آب و مایع ظرف شویی شسته و با آب مقطر آبکشی می کنیم.
2- ظرف توزین را شسته و با آب مقطر آبکشی کرده و برای خشــک کردن آن را در دمای 100 در جه ی سانتیگراد ، به مدت یک ساعت درون اتوکلاو قرار می دهیم.
سپس 30 تا 45 دقیقه آن را درون دسیکاتور می گذاریم تا سرد شود و به دمای اتاق برسد.
3- مقداری از نمونه ی جامد را که برای تهیه محلول با غلظت معین محاسبه کرده ایم را به دقت وزن کرده؛
و سپس با مقدار کمی آب مقطر به داخل بالن ژوژه انتقال می دهیم.
4- درِ بالن ژوژه را می بندیم و آن را تکان می دهیم تا نمونه به طور کامل حل شود. بعد آن را با آب مقطر به حجم می رسانیم ( باید خط نشانه ی ظرف، مماس بر گودترین نقطه ی سطح هلالی محلول باشد ) مجدداً درِ بالن را بسته و آن را تکان می دهیم تا محلول به طور کامل همگن شود.
5- اگر ماده ی اولیه ی محلول مورد نظر مایع است، حجم آن را از روی مشخصات شیشه محاسبه می کنیم و با یک پیپت دقیق، مقدار لازم را در بالن ژوژه میریزیم و آن را به حجم می رسانیم.
http://i39.tinypic.com/10sd8o5.jpg
» بحث و نتیجه گیری«
محاسبات مربوط به این آزمایش :
در آزمایش محلول سازی توسط نمونه ی جامد (NaOH )
هدف ساختن 100ml محلول سود 0.1 M از سود 98% بود :
در آزمایش محلول سازی توسط نمونه ی مایع ( HCl )
هدف ساختن 100ml محلول HCl ، 0.5 M از اسید غلیظ 37% با چگالی 1/19 است.
نتیجه : درپایان بحث، بهترین نتیجه ای که می شود از این آزمایش گرفت این است که ما میتوانیم از یک نمونه ی مایع یا جامد، با کمک گرفتن از روابط شیمیایی و همچنین کار در محیط آزمایشگاه، محلولی با غلظت مشخص بسازیم.
» پاسخ به مسائل «
1- چرا تعیین غلظت محلولها بر مبنای حجم آنها روش مطلوبی نیست؟
زیرا وقتی دما تغییر کند، محلول منبسط یا منقبض می شود و به این ترتیب غلظت بر مبنای حجم تغییر می کند.
راه حل : باید محلولی تهیه شود که مولاریته ی آن، در دمای استفاده از محلول تعیین شده باشد.
2- محلول غلیظ HF، 48% وزنی HF دارد و چگالی آن g/ml 17/1 است. مولاریته ی این محلول چقدر است؟
3- مولاریته ی محلول های 00/6 نرمال HCl، ، چقدر است؟ فرض کنید که خنثی شدن کامل اسیدها موردنظر است.
منابع : شیمی عمومی 1 ( چارلز مورتیمر )
Sara12
11-30-2010, 09:53 PM
وسایل :
پيپت حجم سنجي ، ارلن ، استوانه مدرج ، بشر ، بورت ، قيف ، پايه ، گيره ، پي ست ، كاغذ صافي
مواد :
معرف آمونيوم فريك سولفات ، اسيد نيتريك غليظ ،نقره نيترات ،محلول 0.05 مولار آمونيوم تيو سيانات ،يك نمونه از آب شهر
مقدمه و تئوري:
تیتراسیونهای رسوبی با نقره نیترات
نقره نیترات یک واکنشگر حجم سنجی و پر مصرف است.این واکنشگر برای تعین آنیونهایی که با نقره ایجاد رسوب می کنند به کار می رود.از میان این گونه ها می توان به هالیدها,انواع آنیونهای دوظرفیتی,مرکاپتانها و بعضی از اسیدهای چرب اشاره کرد.روشهای تیترسنجی که با نقره نیترات انجام می شوند گاهی روشهای آرژانتومتری نامیده می شوند.
انواع منحنیهای تیتراسیون
در روشهای تیترسنجی با دو نوع کلی از منحنیهای تیتراسیون بر خورد می کنیم.در نوع نخست,که منحنی s شکل نام دارد,بررسیهای اصلی به ناحیه ی کوچکی در اطراف نقطه ی هم ارزی محدود می شود. یک منحنی s شکل در شکل 1-9 الف نشان داده شده است. در نوع دوم , که منحنی پاره خطی نام دارد اندازه گیریها در هر دو طرف نقطه ی هم ارزی و به اندازه ی کافی دور از آن انجام می شود. از اندازه گیری در نزدیکی نقطه ی هم ارزی پرهیز می شود. یک نمونه از منحنی پاره خطی در شکل 1-9 ب نشان داده شده است. منحنی s شکل سرعت و سهولت را در اختیار استفاده کننده قرار می دهد. در واکنشهایی که تنها در حضور مقدار قابل توجهی از واکنشگر اضافی یا آنالیت کامل می شود استفاده از منحنی پاره خطی سودمند است.
منحنیهای تیتراسیون برای روشهای نقره سنجی
تهیه ی منحنی برای تیتراسیون نقره سنجی به سه نوع محاسبه نیاز دارد که هر یک برای مرحله ای ویژه از تیتراسیون به کار برده می شود:(1) نقاط پیش هم ارزی,(2) نقاط هم ارزی و(3) نقاط پس هم ارزی.
در مرحله ی پیش هم ارزی, غلظت آنالیت از غلظت اولیه ی آن و داده های حجم سنجی محاسبه می شود. در نقطه ی هم ارزی یون نقره و یون آنالیت در نسبتهای استوکیومتری وجود دارند و غلظت یون نقره مستقیم از روی ثابت حاصلضرب انحلال پذیری استخراج می شود. در مرحله ی پس هم ارزی , غلظت تجزیه ای مازاد نقره نیترات محاسبه می شود و فرض می شود که این مقدار با غلظت تعادلی برابر باشد.
نقره
نقره ، یکی از عناصر شیمیایی، با نشانه Ag ، دارای عدد اتمی 47 ، وزن اتمی 107.8682 و در گروه یک فرعی (IB) جدول تناوبی قرار گرفته است. نقره فلزی سفید مایل به خاکستری و براق است و از نظر شیمیایی یکی از فلزات سنگین و از جمله فلزات نجیب و از نظر تجارتی عنصری گرانبها تلقی میگردد. نقره یکی از عناصری است که از گذشته های دور و دورانهای باستان بعنوان یک فلز شناخته شده و مورد استفاده واقع میشده و از آن در کتابهای فراعنه مصری ، که قدمت این کتابها به حدود 3600 سال قبل از میلاد مسیح بالغ میگردد، بعنوان فلزی که از نظر ارزش دارای {5}{2}frac\ ارزش طلا است، یاد شده است. از نقره ، 25 ایزوتوپ رادیواکتیو شناخته شده اند که دارای اجرام اتمی 102 الی 117 میباشند. نقره معمولی از دو ایزوتوپ با جرمهای 107 و 109 تشکیل شده است.
خصوصیات فلز نقره
نقره خالص فلزی براق و نسبتا نرم است که تا اندازه ای سخت تر از طلاست. زمانیکه این فلز پرداخت شود، دارای درخشندگی میشود و میتواند 95% از نور تابیده به خود را بازتاب نماید. این عنصر در میان کلیه فلزات ، مقام بهترین رسانا در زمینه گرما و الکتریسیته را دارا است و در زمینه قدرت چکش خواری و مفتول شوندگی دارای مرتبه دوم پس از طلا است. چگالی نقره 10.5 برابر آب است، بصورتیکه یک متر مکعب از آن دارای وزن 10500 کیلوگرم میباشد. نقره در 961 درجه سانتیگراد ذوب شده و در حدود 2200 درجه سانتیگراد میجوشد.
طلا و نقره مانند محلولهای واقعی میتوانند در هر نسبتی با یکدیگر مخلوط شده و آلیاژ تشکیل دهند. کیفیت نقره و یا بعبارت بهتر عیار آن بر حسب تعداد قسمت نقره خالص در 1000 قسمت مخلوط فلزات بیان میگردد و بطور معمول نقره تجاری دارای عیار 999 است.
خواص شیمیایی نقره
اگرچه نقره از نظر شیمیایی در میان فلزات نجیب فلزی بسیار واکنش پذیر تلقی میگردد، لکن باید توجه داشت که در مقایسه با سایر عناصر از مرتبه واکنش پذیری قابل ملاحظهای برخوردار نمیباشد. این عنصر به آسانی اکسیده شدن آهن اکسید نمیشود، لکن با گوگرد و هیدروژن سولفید واکنش داشته و تشکیل همان تیرگی آشنا را میدهد که در نقرههایتان ملاحظه میکنید.
برای رفع این نقیصه میتوان آبکاری نقره را با کمک رودیم به انجام رسانیده و از وقوع تیرگی مورد نظر پیشگیری نمود همچنین با استفاده از کرم (Cream) یا پولیش نقره میتوان لایه تیره بسیار نازکی را که نقره در ترکیب با گوگرد بوجود آورده است را زدوده و آن را مجددا براق نمود. از طرف دیگر این تیرگی را میتوان از نظر شیمیایی بوسیله حرارت دادن ظرف مورد نظر در محلوا رقیقی از کلرید سدیم و کربنات هیدروژن سدیم یا قرار دادن قسمت تیره در تماس با فلزی فعالتر مانند آلومینیوم که میتواند با گوگرد ترکیب شود و مجددا فلز را به حالت اولیه برگرداند، از بین برد.
نقره نمیتواند با اسیدهای غیر اکسیدکننده مانند اسیدهای کلریدریک و سولفوریک یا بازهای قوی مانند هیدروکسید سدیم واکنش نماید، لکن اسیدهای اکسنده مانند اسید نیتریک یا اسید سولفوریک غلیظ آن را در خود حل کرده و یون یک مثبت نقره (+ Ag) را تشکیل میدهند. این یون که در کلیه ترکیبات ساده و محلول نقره وجود دارد، تقریبا بصورت ساده ای با استفاده از عوامل احیا کننده آلی مانند آنچه در آئینه های نقره ای ملاحظه میشود، به فلز آزاد احیا میگردد. برای آبکاری نقره لازم است یونهای کمپلکس نقره احیا شود. یون (+Ag)بیرنگ است، لکن تعدادی از ترکیبات نقره بدلیل نفوذ سایر اجزای تشکیل دهنده ساختمانی رنگینند. باید توجه داشت که اکسیژن درحد حیرت انگیزی در نقطه ذوب نقره به میزان 20 قسمت حجمی از اکسیژن در یک قسمت حجمی نقره حل میشود. پس از سرد کردن مایع مورد نظر نیز اکسیژن به میزان 75% قسمت (از نظر حجمی) در نقره باقی میماند.
تجزیه و شناسایی
محلولهای حاوی یون نقره را میتوان به آسانی تشکیل رسوب کلرید نقره بوسیله افزایش اسید کلریدریک ، شناسایی کرد. این رسوب را میتوان از رسوبهای سرب و جیوه یک ظرفیتی ، بوسیله قدرت حل شدن آن درهنگام افزودن هیدروکسید آمونیوم اضافی و ایجاد رسوب مجدد با افزودن اسید نیتریک متمایز نمود. مضافا تجزیه وزنی بوسیله کلرید نقره یا برمید نقره که به آسانی قابل رسوب دادن ، خشک کردن و توزین میباشند، میسر میباشد. همچنین میتوان یون نقره را بوسیله عمل الکترولیز به نقره فلزی احیا و بدین روش توزین نمود. از محلول تیوسیانات پتاسیم استاندارد شده نیز میتوان برای تجزیه حجمی نقره استفاده کرد.
کمپلکس های نقره
نقره یک ظرفیتی تعداد زیادی از ترکیبات پایدار کوئوردیناسیونی تشکیل میدهد. این ترکیبات اغلب دو کوئوردینانسی بوده، دارای دو گروه یونی یا مولکولی پیوسته به یک یون مرکزیAg مانند Ag(CN)_2 میباشند. کمپلکسهای کوئوردیناسی مانند -AgCl_3]
2] نیز شناخته شدهاند و احتمالا کمپلکسهای چهار کوئوردیناسی مانند-AgCl_4]
3] در محلولها رخ میدهد. نقره دو ظرفیتی میتواند در برابر تجزیه ، بوسیله تشکیل یون +Ag 2 با استفاده از ترکیبات آلی مانند ارتو_ فنانترولین ، پیریدین و alpha' ،\alpha\ _ دی پیریدیل پایدار شود. یون نقره سه ظرفیتی (+Ag3) نیز با استفاده از کمپلکس شدن به وسیله اتیلن دی بی گوایند پایدار میشود. از طرف دیگر کلیه فلزات ضرب سکه ، یعنی مس ، نقره و طلا به آسانی با موادیکه اتمهای نیتروژن ، گوگرد یا هالوژن برای اتصال با آنها تدارک میکنند، کمپلکس میشوند (در مقایسه با موادیکه تدارک اکسیژن مینمایند). بعنوان مثال کمپلکسهای نقره با یون هیدروکسید (در مقایسه با کمپلکسهای هیدروکسیدروی که کوئوردینانسشونده خوبی با اکسیژن هستند) خیلی پایدار نیستند، بنابراین اکسید نقره در محلولهای قوی هیدروکسید سدیم فقط به میزان کمی حل می شود، در حالیکه هیدروکسید روی با توجه به کوئوردیناسیون شدنش با هیدروکسید ، در آن حل میشود.
نقطه ی آغاز
در ابتدا محلول نسبت به ag+,m 0,000 است و pag نا معین است.پس از افزایش 500ml از واکنشگر غلظت یون برمید به دلیل تشکیل رسوب و رقیق شدن کاهش می یابد. پس غلظت تجزیه ای NaBr عبارت است از:
تعداد میلی مولNaBr پس از افزایش AgNo3 =cNaBr
حجم کل محلول
تعداد میلی مولAgNO3افزوده شده - تعداد میلی مولNaBrاولیه=
حجم کل محلول
M)001000*ML500)-(5000ML*000500M)=
ML+500ML 5000
Mmol-00500)=364*10^-302500)
mL 5500
جمله ی نخست در صورت کسرهای این معادله ها تعداد میلی مولهای NaBr اولیه در نمونه و جمله ی دوم تعداد میلی مولهای AgNo3 افزوده شده را , با تعداد میلی مولهای Br- واکنش داده برابر است. در مخرج کسرهای رقیق شدن محلول در نتیجه ی افزایش واکنشگر در نظر گرفته می شود.
هم NaBr واکنش نداده و هم AgBr کم محلول در غلظت گونه ی یون برمید شرکت می کند. پس, غلظت تعادلی Br- به اندازه ی Br- حاصل از انحلال پذیری مولی رسوب بزرگتر از غلظت تجزیه ای NaBr است:
3-^10*3,64=[-Br]
مشارکت نقره برمید در غلظت تعادلی یون برمید برابر [Ag+] است , زیرا از این ترکیب به ازای هر یون برمید , یک یون نقره ایجاد می شود .از این جمله , بجز در مواردی که غلظت NaBr خیلی کوچک است, می توان چشمپوشی کرد.یعنی , 3-^10*3,64>>[Ag+] , و بنابر این 3-^10*64, cNaBr = 3 =Br-
غلظت یون نقره از رابطه ی زیر نتیجه می شود:
= Ksp[Ag+]
[Br-]
برای بدست آوردن PAg, از دو طرف این معادله لگاریتم منفی می گیریم. پس
([-Br]log-) log Ksp -- =[Ag+]-log
با توجه به تعریف تابع p-, می توان نوشت:
pAg = pKsp – pBr
= -log 5.2*10^-13 – pBr
= 12.28 – (-log3.64*10^-3)
=12.28 – 2.44 = 9.84
این رابطه برای هر محلول حاوی یونهای نقره و برمید که در تماس با نقره برمید جامد باشد به کار می رود . توجه کنید که pAg محاسبه شده با 1.4*10^-10 = [Ag+] مرتبط است و در واقع ,همان گونه که در ابتدا فرض کردیم , 3.64*10^-3 بسیار کوچکتر است.
نقاط دیگر در ناحیه ی پیش از هم ارز شیمیایی را می توان به همین روش بدست آورد. داده ها برای تعدادی از این نقاط در ستون 3 جدول 9_2 یافت می شوند.
نقطه ی هم ارزی
در نقطه ی هم ارزی , NaBr و AgNo3 هیچ کدام به مقدار اضافی وجود ندارد و بنابراین غلظت یون نقره و برمید باید برابر باشد. با جایگزینی این تساوی در عبارت حاصلضرب انحلال پذیری نتیجه می شود:
7 -^10* 7.21 =-13-^10*05.2√ = [Br-] = [Ag+]
pAg = pBr = -log (7.21*10^-7)
بعد از افزایش 25.10 از واکنشگر اکنون محلول حاوی مقدار زیادی از AgNo3 است می توان نوشت:
تعداد میلی مول اولیه NaBr - تعداد کل میلی مولAgNo3 = cAgNo3
حجم کل محلول
= (25.10ML * 00.1000M) – (50.00ML * 0.00500M)
ML (25.10+50.00)
-5^10*1.33=
بنابر این غلظت تعادلی یون نقره عبارت است از:
33 * 10^-5.1 ≈ [Br-] + 5 -^10*1.33 = [Ag+]
در این معادله [Br-] معیاری از غلظت Ag+ حاصل از انحلال پذیری جزئی AgBr است:
که معمولا می توان از آن چشمپوشی کرد.
پس
pAg = -log(1.33*10^-5) = 4.876 = 4.88
سایر نقاط تعیین هویت منحنی تیتراسیون پس از نقطه ی هم ارزی را می توان به روش مشابه به دست آورد که در جدول 9-2 این داده ها یافت می شوند.
واحدهای بکار رفته در گزارش يون كلريدآب
معمولا بر حسب ppm یعنی mg/lit بیان میشود. علاوه بر این ، واحدهای آلمانی ، انگلیسی ، فرانسوی ، آمریکایی را نیز در بیان آن بکار میبرند.
روش کار :
1- بشر را شسته و 50 ميلي ليتر آب شهر را توسط استوانه مدرج در بشر ميريزيم.
2- 20ميلي ليتر محلول نقره نيترات 0.05 مولار توسط پيپت به آن اضافه مي كنيم و حداقل 10 دقيقه آن را به هم بزنيد .
3- بشر محتوي رسوب AgCl در يك ارلن كاملا تميز صاف كنيد و بشر را با پيست آب مقطر بشوريد .
4- يك ميلي ليتر اسيد نيتريك غليظ به آن اضافه كنيد .
5- 3 ميلي ليتر محلول معرف آهن III Fe³̽ ) محلول آمونيوم فريك سولفات FeNH4(SO4)2 ) به ارلن اضافه كنيد .محلول زرد رنگ ميشود .
6- بورت را با محلو ل0.05 مولار آمونيوم تيو سيانات NH4SCN پر نموده هوا گيري كرده و ارلن را تا ظهور رنگ قرمز تيتر كنيد حجم مصرفي را يادداشت كنيد .
7- ־ppm Cl بر حسب خود و كربناتي محاسبه و گزارش نماييد.
واكنش مرحله 2:
Ag Cl → Ag͊ + ־Cl
واكنش مرحله 6:
→ Ag SCN־Ag͊ + SCN
واكنش پايان تيتراسيون :
Fe³ ͊ + SCN → FeSCN² ͊
جدول حاصل از آزمایش:
حجم آمونيوم تيو سيانات مصرفي (ml )
12.8
نمونه محاسبات:
(CM*VSCN)=mEq - CM*VAg))
(0.05*20) - (0.05*12.8)=0.36
Ppm Cl=(mEq /50ml)*(35.5mgr/1mEq)*(1000ml/1Lit)=255.6
360=Ppmcl*(50/E)=ppmCl كربناتي
جدول حاصل از محاسبات:
ppmCl كربناتي ppmCl־ ميلي اكي والان گرم Cl
360 255.6 0.36
نتیجه گیری: در اين آزمايش با استفاده از نقره ، يون هاي كلريد در آب را رسوب داده و سپس با استفاده از آمونيوم تيو سيانات مقدار اضافي نقره را با تيتراسيون محاسبه نموده و از اختلاف آن دو مقدار Cl را محاسبه مي نماييم و ppmCl را بر حسب خود و كربناتي گزارش مي نماييم.
منابع خطا: در اندازه گیری حجم هاي دقيق مصرفي در لحظه و در تشخيص دقيق تغيير رنگ.
Sara12
11-30-2010, 09:53 PM
موضوع آزمايش : مبدل حرارتي
هدف آزمايش : آشنايي با مبدلهاي حرارتي (مقايسه ي جريان هم سو و ناهم سو) –محاسبه مقدار حرارت منتقل شده -درجه حرارت لگاريتمي- ضريب انتقال حرارت كلي
ابزار لازم: مبدل حرارتي-بشر بزرگ براي اندازه گيري دبي-كرنومتر
مواد لازم: سيال مورد نياز مبدل (آب)
تئوري:
1- مقدمه:
به طور كلي مبدل حرارتي وسيله اي است كه انرژي حرارتي را از يك سيال به يك يا چند سيال كه داراي درجه حرارت متفاوتي هستند منتقل
مي كند.
در اين تعريف مشخس مي گردد كه در يك مبدل حرارتي حداقل دو سيال وجود دارد كه حرارت ميان آن دو تبادل مي شود.
پستانداران مبدل هاي حرارتي پيچيده اي دارند كه مهمترين آن شش ها هستند كه با اشباع هواي بازدم از بخار آب بدن را خنك مي كند.
رادياتور نيز از انواع مبدل هاي حرارتي است كه در آن آب در گردش داخل موتور به وسيله ي هوا خنك ميشود.
شوفاژها و تهويه هاي متبوع از انواع مبدلها هستند.
2- مبدل هاي حرارتي لوله اي:
از اين مبدل ها بيش از هر نوع مبدل حرارتي ديگر استفاده مي شود. مبدل هاي حرارتي لوله اي خود انواع مختلفي دارند كه از آن جمله مي توان به دو نوع (تك لوله اي) و (دو لوله اي) و (لوله ي مارپيچي) و (لوله-پوسته) اشاره نمود.
مبدل حرارتي دو لوله اي :
اين مبدل از دو لوله ي هم محور تشكيل ميشود. يكي از دو سيال در لوله ي داخلي و ديگري در مجراي حلقوي بين دو لوله يا به عبارتي در لوله ي خارجي جريان دارد.
كاربرد اين گونه مبدل ها زماني است كه سطح تبادل مورد نياز كوچك باشد به ويژه زماني كه يكي از دو سيال گاز يا مايع لزج يا دبي آن كم باشد.
مبدل هاي حرارتي لوله-پوسته :
اين مبدل از انواع متداول مبدل هاي حرارتي چند لوله اي است كه براي انتقال حرارت (مايع-مايع) (مايع با سيال در حال تبخير) و (مايع در حال تقطير) كاربرد دارد. يك نوع از اين مبدل كه شبيه مبدل هاي دو لوله اي است از يك پوسته تشكيل شده است كه تعدادي لوله ي (يو)شكل در داخل آن قرار دارد.
3- انواع جريان در مبدل هاي حرارتي:
جريان سيالات در مبدل هاي حرارتي لوله اي به دو شكل صورت مي گيرد:
الف-جريان هم سو :
دراين مبدل سيال سرد و گرم هر دو در يك جهت حركت كرده تبادل حرارت صورت مي گيرد.
ب-جريان ناهم سو :
سيال سرد و گرم در دو جهت مخالف حركت ميكنند در نتيجه ميزان تبادل ح انتقال حرارت افزايش مي يابد و راندمان كار بيشتر مي شود.
4- اساس كار مبدل هاي حرارتي لوله – پوسته:
بيشتر سيال گرم درون لوله هاي موجمد در لوله هاي موجود در پوسته جريان مي يابد و در محفظه ي مياني لوله ها (درپوسته) سيال سرد پس از عبور از مسير هاي تعيين شده با سطح جانبي لوله برخورد كرده تبادل حرارت صورت مي گيرد و در انتها از مجراي مخصوص خارج مي شود.
5- راه اندازي مبدل حرارتي :
1- ابتدا سيال سرد وارد پوسته ي مبدل مي شود سپس به تدريج سيال گرم در درون لوله ها جريان مي يابد.
2-چنانچه از مشتقات نفتي يا گازي براي سيالات درون مبدل استفاده ميكنيد بايد از يك گاز بي اثر يا بخار آب برلي تخليه ي هواي درون مبدل و جلوگيري از انفجار-استفاده نماييد.
6-از كار انداختن مبدل هاي حرارتي :
1-ابتدا جريان گرم را درون مبدل قطع كنيد تا مبدل به تدريج سرد شود.
2-جريان سرد را قطع نماييد.
3-براي جلوگيري از انفجار در مبدل هاي حرارتي كه مخلوط هاي هيدروكربني در آن نقش سيال را بر عهده دارد بايد پس از خاموش كردن دستگاه مبدل را هوا گيري نماييد.
7-خوردگي در مبدل هاي حرارتي:
با توجه به اين كه در صنايع شيميايي بيشتر مواد خاصيت خورندگي دارند لوله هاي موجود در مبدل هاي حرارتي نيز فرسوده شده بر اثر خوردگي سوراخ مي شوند كه اين امر در عمل تبادل حرارت ايجاد اختلال مي كند.
به همين منظور روش مشخص شدن در لوله ها بيان مي شود :
1-مبدل حرارتي را از دستگاه خارج نماييد.
2-مواد را در پوسته و لوله ي مبدل به طور كامل تخليه كنيد.
3-خروجي مسير پوسته را ببنديد.
4-آب فشار قوي را در درون پوسته ي مبدل وارد كنيد.
توجه : چون خروجي پوسته مسدود است هر لوله اي كه سوراخ باشد آب را از خود عبور مي دهد.
ضريب كلي انتقال حرارت :
در سيستم هاي مسطح ضريب كلي انتقال حرارت را ميتوان معكوس جمع مقاومت ها در نظر گرفت يعني :
(جمع مقاومت ها)1/r
ما براي به دست آوردن ميزان حرارت منتقل شده در مبدل به اختلاف درجه حرارت لگاريتمي احتياج داريم كه در قسمت محاسبات ذكرشده است با معادله مربوطه.
البته اگر از مبدلي به غير از نوع دو لوله اي استفاده شود يك ضريب به معادله ي ميزان حرارت منتقل شده كه ذكر شده اضافه مي شود.
شرح آزمايش:
ابتدا مقداري آب گرم در مخزن آب گرم مي ريزيم تا به گرم شدن آب توسط آب گرمكن سرعت بدهيم.
سپس لوله ي جريان آب سرد را هم به آب شهر وصل كرده و خروجي آن را هم درون سينك قرار مي دهيم.
بعد آب گرم كن را روشن مي كنيم تا درجه حرارت را به حدود 60 درجه سانتي گراد برسد.
پمپ را هم روشن مي كنيم تا آب گرم را از مخزن آب گرم پمپ كند و سيكل آب گرم ما تكميل گردد. (آب گرم پس از عبور از مبدل حرارتي دوباره به مخزن بر مي گردد.)
زماني كه دماها متعادل شد دماهاي آب گرم ورودي و خروجي را هم از روي نشانگر دما كه بر روي مبدل قرار دارد مي خوانيم و يادداشت مي كنيم.
دبي آب گرم و سرد را هم اندازه گيري مي كنيم.(البته بر روي مبدل روتامتر هم هست.)ولي مه به روش پيمهنه اي دبي را اندازه گيري مي كنيم به اين صورت كه مقدار آبي كه در زمان مشخصي خارج شده را اندازه گيري مي كنيم و بعد بر آن زمان تقسيم تا دبي به دست آيد.(دبي را يادداشت مي كنيم.)
اين كارها را براي دو جريان هم سو و ناهم سو انجام مي دهيم. براي تبديل جريان هم سو به ناهم سو جاي شلنگ هاي مبدل را عوض مي كنيم.
موارد خطا :
مقداري خطاي جزئي در اندازه گيري ها مثل اندازه گيري زمان براي به دست آوردن دبي.
نتيجه گيري :
در مبدل ها ميزان حرارت منتقل شده در حالتي كه جريان سيال هاي گرم و سرد مخالف جهت حركت هم هستند (ناهم سو) بيشتر از حالت هم سو مي باشد.و طبق اين آزمايش و محاسبات به روش (ال-ام-تي-دي) و با به دست آوردن اختلاف درجه حرارت متوسط لگاريتمي مي توان ميزان حرارت مبادله شده را به دست آورد.
Sara12
11-30-2010, 09:54 PM
خواص فيزيكي و شيميائي آب مانند شفافيت ، رنگ ، بو ، دما ، نمك هاي محلول درآن ، سختي خواص كاهشي و PH ، كيفيت آب را بيان مي كند . دراين ميان نمك هاي محلول در آب يكي از مهمترين عوامل است . تمام نمك هايي كه در آب محلول اند نشان دهنده ناخالصي هاي آب معدني اند . بر حسب آنکه آب در موقع نفوذ در زمین از قشرهای آهکی و منیزیمی و گچی گذشته و یا نگذشته باشد سختی آب کم یا زیاد میشود. آبهای نواحی آهکی سختی زیادتری تا آبهای نواحی گرانیتی و یا شنی دارند. سختی آب در عرض سال هم ممکن است تغییر نماید. معمولاً سختی آبها در فصل باران کم و در فصل خشکی زیاد میشود. و بعضی مواقع هم در فصول پر باران و مرطوب مثل غار ها ایجاد شود.
آب سخت آبی است که حاوی نمكهاي معدني از قبيل ترکیبات کربناتهای هیدروژنی ٬ کلسیم ٬ منیزیم و ... است.
سختی آب بر دو نوع است : دایمی و موقت
سختي موقت :
اين سختي به دليل وجود بي كربناتهاي كلسيم و منيزيم است كه دراثرجوشيدن به كربناتهاي نامحلول تبديل مي شوند و به صورت جامد ته نشين مي گردند .
http://miadsoft.persiangig.com/image/miadsoft.bmp
سختي دائمي :
اين سختي شامل آن دسته از نمك هاي كلسيم و منيزيم است كه دراثرجوشيدن آب به صورت محلول باقي مي مانند .
آب سخت برای انسان مضر نیست بلکه مفید است و معمولاً شکستگی استخوانهای آنهایی که آب سخت میآشامند زودتر بهبودی حاصل میکند و بیماری راشیتیسم کمتر در این اشخاص دیده میشود.
علیرغم فواید آب سخت برای بدن سختی بیش از حد آب نیز مضراتی دارد که مهمترین آن تشدید پدیده تولید سنگ کلیه به دلیل رسوب بونهای معلق در کلیه میشود. آب سخت برای رختشویی و مصرف در کارخانجات مناسب نیست. آب سخت موجب از دست دادن طعم و مزه خوب چایی و قهوه میشود. پخته نشدن حبوبات با آب سخت ضرر رساندن به جداره دیگهای بخار و ایجاد قشر آهکی بر روی جداره دیگ خوب کف نکردن صابون و موجب افزایش مصرف صابون مزاحمت در هنگام شستن نسوج و دستها رفع سختی آب در تجارت تعداد زیادی مواد شیمیایی برای رفع سختی آب به فروش میرسد که دارای کربنات سدیم هستند. این مواد را قبل از ورود آب در دیگها سختی آنرا میگیرند و یا در دیگ بر اثر افزودن این مواد آهک و گچ را رسوب میدهند و دیگر این رسوب محکم به جدار دیگ نمیچسبد بطوری که میتوان آنرا به آسانی پاک نمود.
برای برطرف کردن سختی آب ، با جوشاندن کربناتهای هیدروژنی محلول به کلسیم نامحلول تبدیل شده و تشکیل رسوب میدهند.
یکی از اجسام گیرنده سختی آب تری ناتریم فسفات میباشد که با اسم آلبرتتری بکار میرود. یون کلسیم موجود در آب بر اثر ناتریم فسفات تبدیل به " تری فسفات کلسیم " میگردد و رسوب مینماید.
اخیرا به مقدار زیاد از صمغهای مصنوعی که قادرند تعویض یون کنند برای رفع سختی آب استفاده میکنند. صمغ لواتیت در آلمان و آمبرلیت و دووکس در آمریکا استعمال میگردد. در صنعت از ستونهای تبادل یونی برای کاهش سختی استفاده می شود. ( ستونهای رزینی - آنیونی - کاتیونی )
در پیشرفته ترین تکنولوژی ار فرآیند اسمز معکوس (Reverse Osmosis)برای کاهش سختی ، EC ( هدایت الکتریکی یا شوری ) و TDS( کل جامدات محلول ) آب استفاده می شود که فواید بسیاری از جمله مطمئن بودن آن و هزینه های جاری بسیار پایین دارد . این فرآیند در ایران به دلیل اینکه اولین بار برای کاهش EC ( شوری ) آب استفاده شد به آب شیرین کن معروف است .
درجه سختی آب
درجه سختی آب را از روی مقدار کلسیم و منیزیم موجود در آن تعیین میکنند. در آلمان اگر آبی ده میلی گرم CaO در یک لیتر داشته باشد میگویند درجه سختی آب یک است. در فرانسه اگر آبی در یک لیتر ده میلی گرم کربنات کلسیم یا همسنگ آن کربنات منیزیم داشته باشد میگویند که یک درجه سختی دارد. در انگلستان اگر آبی ده میلی گرم کربنات کلسیم و یا همسنگ آن کربنات منیزیم در ۰.۷ لیتر داشته باشد یک درجه سختی دارد.
Sara12
11-30-2010, 09:57 PM
تعیین وزن اتمی منیزیم:
منیزیم عنصری فلزی به رنگ سفید نقره ای است که در گروه 2 جدول تناوبی قرار دارد. این عنصر در سال 1808 توسط humphrey davy دانشمند انگلیسی کشف گردید. از الکترو لیز نمک کلرید منیزیم و همچنین از آب دریا بدست می آید. منیزیم و ترکیبات آن مدت زمان مدیدی است که شناخته شده هستند. منیزیم هشتمین عنصر از نظر فراوانی در پوسته زمین به حساب می آید. این عنصر در نهشته های عظیم در کانیهای مگنزیت، دولومیت ودیگر کانی ها یافت می شود. این عنصر از الکترولیز کلرید منیزیم ناشی از اب های نمک دار، چاه ها و آب دریا ها حاصل می شود. منیزیم عنصری سبک به رنگ سفید نقره ای است این عنصر به راحتی در درجه حرارت بالا می سوزد و شعله سفید رنگ وتابناکی در موقع سوختن نمایان می کند. موارد استفاده این عنصر شامل مواد محترقه و منفجره شامل بمب های آتش زا می باشد. حدود یک سوم ترکیبات الو مینیومی و آلیاژهای ضروری برای هواپیما ها و موشکها از این عنصر استفاده می شود. این عنصر دارای خاصیت جوش خوردگی بهتر از آلومینیوم می باشد که برای عناصر آلیاژی مورد استفاده قرار می گیرد. همچنین برای تولید گرافیتهای حلقه ای چدنی کاربرد دارد. همچنین این عنصر یک عامل کاهنده در تولید اورانیوم خالص و نمکهای فلزی است. هیدروکسید، کلرید، سولفات و سیترات منیزیم در دندانپزشکی استفاده می شود. به علت اشتعال پذیری بالای این عنصر برای سوخت کوره های کارخانه ها استفاده می شود. ترکیبات آلی منیزیم نقش حیاتی در زندگی گیاهی و جانوری دارند. کلرفیل گیاهان دارای منیزیم است. به علت اشتعال پذیری بالای منیزیم موقع استفاده از این عنصر باید دقت لازم را به عمل بیاوریم. در موقع سوختن منیزیم نباید از آب استفاده کرد.
روش کار:
ابتدا درون یک ارلن تمیز، به مقدار کمی آب می ریزیم و سپس در حدود 15ml Hcl غلیظ به آن اضافه میکنیم (هنگام برداشتن Hcl غلیظ از عینک ایمنی استفاده کنید) و سپس به ارلن آب اضافه کرده تا ارلن پر شود (تا وسط گردنه ارلن). سپس یک تکه نوار منیزیم را وزن کرده، (m=0.024 gr ) آن را درون بشر انداخته و درپوش ارلن را که لوله ی شیشه ای از وسط آن می گذرد، می گذاریم. در انتهای لوله شیشه ای یک بشر می گذاریم.
در درون ارلن واکنش زیر اتفاق می افتد: 2HCl + Mg MgCl2 + H2 با پیشرفت واکنش حجم گاز H2 موجود در ارلن بیشتر شده، با بالا رفتن فشار به سطح مایع درون ارلن فشار می آید، از لوله شیشه ای بالا آمده و درون بشر می ریزد. واکنش تا جایی پیش می رود که منیزیم به طور کامل با HCl واکنش دهد. یک دماسنج درون بشر می گذاریم تا دمای مایعی که از ارلن به بشر می ریزد بدست آید. دما را یادداشت می کنیم (T1=297.5k ). مایع موجود درون بشر را به یک استوانه مدرج منتقل کرده تا حجم مایع بدست آید (V1=138ml ). این حجم در واقع همان حجم گاز هیدروژنی است که از واکنش منیزیم با محلول HCl تولید شده است.
محاسبات:
فشار آزمایشگاه را نیز (p1=750 mmHg ) در نظر می گیریم.
شرایط استاندارد را نیز در نظر می گیریم، (T2=273 K وp2=760 mmHg ).
مقادیر فوق را در فرمول زیر جایگزین کرده تا حجم گاز H2 در شرایط استاندارد بدست آید:
P1 V1 / T1 = P2 V2 / T2 750×138/297.5 = 760×V2/273 V2=124.96 ml
با توجه به اینکه 1 mol از هر گازی 22.4L حجم دارد تعداد مول H2 بدست می آید:
mol H2 = 0.12496L .(1mol / 22.4L) = 5.578×10-3 mol H2
از آنجایی که در فرمول واکنش ضرایب H2 وMg برابر هستند، در نتیجه: Mol H2 = mol Mg = 5.578×10-3
با استفاده از فرمول زیر وزن اتمی منیزیم بدست می آید:
M = m / n = 0.24 / 0.005528 = 43.021
محاسبه ی درصد خطا
100 × مقدار واقعی /مقدار تجربی - مقدار واقعی=درصد خطا
24.3050-43.021/24.3050 × 100 = 77% =درصد خطا
دلایل خطای آزمایش:
عواملی که باعث خطا در آزمایش شده عبارتند از:
1. مقداری از محلولی که از ارلن بالا امده در لوله باقی مانده که در اندازه گیری حجم گاز H2 محاسبه نشده. (هوای درون لوله در اندازه گیری حجم H2 لحاظ نشده).
2. بشر بر روی میز کار که از جنس سنگ است قرار داده شده بود که از نظر دما عایق نبود در نتیجه دمای محلول ما دارای خطا شده است.
3. اشکال فنی ترازویی که با آن وزن Mg را اندازه گیری کردیم.
Sara12
11-30-2010, 09:57 PM
گرم چای را در یک بشر یک لیتری ریخته با 500 میلی لیتر آب حدود 25 دقیقه بجوشانید. در یک بشر دیگر به وسیله پارچه آنرا صاف کنید و در همان حال ظرف محلول صاف شده باید روی اجاق باشد تا محلول سرد نشود. همراه با به همزدن 150 میلی لیتر محلول 10% بازی استات سرب به آن اضافه کنید. تانین رسوب میکند. محلول گرم را صاف کنید. محلول را با اسید سولفوریک رقیق واکنش دهید تا سولفات سرب رسوب کند. رسوب را صاف کنید. به محلول 5 گرم کربن اکتیو اضافه کنید و حرارت دهید تا حجم آن حدود 200 – 150 میلی لیتر بشود. محلول را صاف کنید و با 25 میلی لیتر کلروفرم تکان دهید. لایه کلروفرم را در قیف جدا کننده جدا کنید. استخراج با 25 میلی لیتر کلروفرم را 3 مرتبه انجام دهید. به وسیله تقطیر، بیشتر کلروفرم را خارج کنید. باقی مانده را در مقدار کمی آب گرم حل کنید و محلول را با تبخیر آهسته فشرده کنید. کافئین مانند رشته های ابریشم جدا میشود. محصول کافئین با یک مولکول آب همراه است که اگر تا 100 درجه سانتیگراد آنرا گرم کنید آبش را از دست میدهد. راندمان و نقطه ذوب آنرا تعیین کنید.
http://iranchem.persiangig.com/image/Picture-gallery/%DA%86%D8%A7%DB%8C%20%D9%88%20%DA%A9%D8%A7%D9%81%D 8%A6%DB%8C%D9%86.jpg
چای یک نوشیدنی است که با دم کردن برگها،جوانه ها یا شاخه های فرآوری شده بوته چای گونه Camellia sinensis به مدت چند دقیقه درآب داغ درست می شود. فرآوری آن می تواند شامل اکسیداسیون (تخمیر)، حرارت دهی، خشکسازی و افزودن گیاهان، گلها، چاشنیها و میوه های دیگر به آن باشد.
چهارنوع چای خالص وجود دارد: چای سیاه، چای اولانگ، چای سبز وچای سفید . اصطلاح چای گیاهی معمولا" به مواد دم کرده میوه ای یا گیاهی همچون چای دانه گل سرخ، چای بابونه و چای سنجد جیلان(Jiaogulan) که شامل برگهای چای نیست، گفته می شود. (موارد دیگر برای چای گیاهی که درآن از کلمه "چای" استفاده نمی شود "جوشیده" و "دم کرده گیاهی" است). این گفتار منحصرا" به تهیه و کاربردهای بوته چای "Camellia sinesis" می پردازد.
چای یک منبع طبیعی از کافئین، تئوفیلین، تیانین و آنتی اکسیدان ها است، اما تقریبا بدون چربی، کربوهیدرات ها، یا پروتئین . آن دارای طعمی مطلوب است که کمی تلخ و گس می باشد.
http://www.daneshema.com/upload/mayor/upload/image/technology_engineering/chemistry/article/caffeine_metabolites.png
Sara12
11-30-2010, 09:58 PM
برای انتقال حرارت از داخل یك محفظه یا اتاق به خارج , احتیاج به یك واسطه است. در یك سیستم سرد كننده مكانیكی استاندارد , عمل گرفتن حرارت با تبخیر مایعی در دستگاه تبخیر (Evaporator), و پس دادن آن در دستگاه تقطیر (Condenser) صورت می گیرد و این امر باعث تغییر حالت ماده سرمازا از بخار به مایع می گردد .مایعاتی كه بتوانند به سهولت از مایع به بخار و بالعكس تبدیل شوند به عنوان واسطه انتقال حرارت به كار برده می شوند, زیرا این تغییر حالت باعث تغییر حرارت نیز می گردد .برخی از این مواد سرمازا از مواد دیگر مناسب تر هستند .
http://iranchem.persiangig.com/image/Picture-gallery/%D9%85%D8%A8%D8%B1%D8%AF-%20%D8%AE%D9%86%DA%A9%20%DA%A9%D9%86%D9%86%D8%AF%D 9%87.jpg
خصوصیات مواد سرمازا :
سیالی كه به عنوان ماده سرمازا مورد استفاده قرار می گیرد باید دارای كیفیات زیر باشد:
1- سمی نباشد.
2- قابل انفجار نباشد .
3-اكسید كننده نباشد .
4- قابل اشتعال نباشد .
5- در صورت نشت به سهولت قابل تشخیص باشد
6- محل نشت آن قابل تعیین باشد .
7- قادر به عمل كردن در فشار كم باشد (نقطه جوش پایین) .
8- از نوع گازهای پایدار باشد .
9- قسمت هایی كه در داخل مایع حركت می كند به سهولت قابل روغنكاری باشند.
10- تنفس كردن آن مضر نباشد .
11- دارای گرمای نهان متعادلی برای مقدار تبخیر در واحد زمان باشد .
12- جابجایی نسبی آن برای ایجاد مقدار معینی برودت كم باشد .
13- دارای كمترین اختلاف, بین فشار تبخیر و تقطیر باشد .
ماده سرمازا نباید خورنده باشد (ایجاد زنگ زدگی كند) تا ساختن تمام قطعات سیستم از فلزات معمولی با عمر خدمتی طولانی تر عملی گردد.
مبنای مقایسه مواد سرمازای به كار رفته در صنعت سرد كنندگی , بر اساس حرارت تبخیر 5 درجه فارنهایت و حرارت تقطیر 68 درجه فارنهایت است .
شناسایی مواد سرمازا بوسیله شماره گذاری :
روش جدید مشخص كردن مواد سرما زا در صنایع تبرید , شماره گذاری این مواد است . پیش حرف R كه مخفف كلمه REFRIGERANT به معنای سرمازا است نوشته می شود. روش مشخص نمودن شماره ای توسط انجمن مهندسین تهویه ,تبرید و حرارت مركزی آمریكا متداول شده است .
طبقه بندی مواد سرما زا :
این مواد بوسیله دو سازمان ملی آمریكایی به نام های :
The national refrigeration safety code
The national board of fire underwriters طبقه بندی شده اند.
سازمان اول تمام مایعات سرمازا به سه گروه زیر تقسیم بندی می كند:
گروه اول – بی خطر ترین مواد كه شامل R-500,R-14,R-13,R-502,R-744 R-13BL,R-22,R-30,R-12,R-114,R-21,R-11,R-113 می باشد.
گروه دوم _ مواد سمی و تا حدی قابل اشتعال كه شاملR-717,R-40,R-764, R-1130,R-160,R-611 می باشد.
گروه سوم _ مواد قابل اشتعال كه شامل R-50,R-1150,R-170,R-290-
می باشد.
موسسه NBFU نیز مواد سرمازا را نسبت به درجه سمی بودن آن ها طبقه بندی كرده است كه شامل شش گروه است كه بی خطر ترین آن ها گروه یك است.
GROUP 1 CLASS
R-744 Carbon Dioxide 5
R-12 6
R-13B1 Kulene-131 6
R-21 6
R-114 6
R-30 Carrene No. 1 4
R-11 6
R-22 5
R-113 4
R-500 6
R-502 6
R-503 6
R-504 6
R-40 Methylene Chloride 4
GROUP 2
R-717 Ammonia 2
R-1130 Dichloroethylene 4
R-160 Ethyl Chloride 4
R-40 Methyl Chloride 4
R-611 Methyl Formate 3
R-764 Sulphur Dioxide 1
GROUP 3
R-600 Butane 5
R-170 Ethane 5
R-601 Iso Butane 5
R-290 Propane 5
در اینجا به بررسی بعضی از مبردهای متداول می پردازیم
22-R (دی كلرودی فلورو متان ) (CCl2F2) :
ماده ای است بیرنگ تقریبا بی بو و در فشار اتمسفر دارای نقطه جوشی معادل 7/21 درجه فارنهایت است . ماده ای غیر سمی و غیر قابل اشتعال است و خورنده نیست , از نظر شیمیایی در حرارت های عملیاتی بی اثر است و از نظر حرارتی تا 1022 درجه پایدار باقی می ماند .
12- R :
دارای گرمای نهان نسبتا پایین است و برای مصرف در دستگاه های كوچك تر مناسب می باشد , زیرا گردش مقدار زیادی ماده سرما زا امكان استفاده از مكانیزم های عملیاتی و تنظیم دقیق تر و در عین حال با حساسیت كمتر را میسر می كند . از این مبرد در كمپرسور های پیستونی و دورانی و انواع بزرگ گریز از مركزی استفاده می شود .
این ماده در فشار های سر , و معكوس (پس فشار) كم , ولی مثبت با یك بازدهی حجمی خوب كار می كند , 12- R , در 5 درجه فارنهایت , فشاری معادل 5/26 پوند بر اینچ مربع مطلق , و در 86 درجه فارنهایت دارای فشاری مطلق معادل 8/108 پوند بر اینچ مربع است .
گرمای نهان آن در 5 درجه فارنهایت 2/68 بی-تی- یو است و نشت آن به سهولت و با استفاده از نشت یاب الكترونیكی یا مشعل هالاید مشخص می گردد.
در حرارت صفر درجه مقدار كمی آب در 12-R حل می شود كه نسبت آن بر حسب وزن 6 در ملیون است . مایعی كه تولید می شود تا حدودی بر روی اكثر فلزات معمولی كه در ساختمان دستگاه های سرد كننده استفاده می شود , ایجاد زنگ می كند . اضافه كردن روغن های معدنی هیچگونه اثری در ایجاد رنگ بوسیله مایع ندارد ولی احتمالا كم رنگ شدن مایع به وسیله آب را كاهش می دهد . حساسیت ماده 12-R نسبت به آب در مقایسه با 22-R و 502-R بیشتر است . تا 90 درجه قابل حل شدن در روغن است . در این حرارت روغن شروع به جدا شدن می كند و به علت سبك تر بودن وزن در سطح آن جمع می شود .
به كار بردن 30 پوند از این ماده به ازای هر 1000 فوت مكعب فضای تهویه شده كاملا بی خطر است .
این ماده در سیلندر های به اندازه مختلف عرضه می شود و احتمالا در قوطی های سر بسته و محكم نیز یافت می شود . كد رنگی مخصوص 12- R سفید است .
22-R منوكلرودی فلورو متان (CHCLF2) :
22-R یك ماده سرمازای مصنوعی است كه انحصارا برای دستگاه های تبریدی كه درجه تبخیر پایینی دارند ساخته شده است . یكی از موارد استفاده آن در دستگاه های انجماد سریع است كه حرارت آن ها بین 20 تا 40 درجه فارنهایت حفظ می گردد . همچنین در دستگاه های تهویه مطبوع و یخچال های خانگی نیز به طور موفقیت آمیزی مورد استفاده قرار گرفته است . 22-R فقط در كمپرسورهای پیستونی به كار گرفته می شوند و فشار عملیاتی آن به نحوی است كه برای نیل به درجات پایین , نیازی به كار كردن در فشار های كمتر از جو نیست . گرمای نهان آن به ازای هر پوند در 5 درجه فارنهایت 21/93 بی-تی-یو است . فشار عادی سر كمپرسور در 86 درجه 82/172 پوند بر اینچ مربع مطلق است .
22-R ماده ای پایدار ,غیر سمی ,بدون اثر اكسید كنندگی , بی آزار و غیر قابل اشتعال است . فشار اواپراتور در 5 درجه فارنهایت 43 پوند بر اینچ مربع است . حلالیت آن در آب 3 برابر 12-R است . بنابراین رطوبت در این ماده باید حداقل باشد .به همین دلیل استفاده از رطوبت گیر و خشك كن در این مورد بیشتر است .
به علت تمایل شدید تر 22-R به آب تعداد بیشتری رطوبت گیر برای خشك كردن آن لازم است. 22-R تا حرارت16درجه فارنهایت در روغن حل می شود وپس از ان روغن شروع به جدا شدن نموده و چون از مایع سبك تر است در سطح آن جمع می شود. وجود نشت را می توان به وسیله ی نشت یاب الكترونیكی و یا مشعل هالاید تیین كرد.
مواد سرما زای مخلوط :
همانطور كه از نامشان پیداست , این مواد مخلوطی از دو یا چند ماده ی سرما زا هستند, ولی مانند یك ماده سرما زای واحد عمل می كنند. و چهار نوع متداولتر آنها عبارتند از:
1)R-500 كه مخلوطی است از 8/73 درصد R-12 و 2/26 درصد R-152a
2)R-502 كه مخلوطی است از8/ 48 درصد R-22 و 2/ 51درصد R-115
3) كه مخلوطی است از 1/ 41 درصد R-23 و 9/ 59 درصد R-13
4) كه مخلوطی است از 2/ 48 درصد R-32 و 8/ 51 درصد R-115
این مواد سرما زا موادی ثبت شده هستند كه مراحل تركیب آنها پیچیده است و متصدی سرویس نباید با اختلاط مواد مبرد اقدام به ساختن ماده ای مخصوص بنماید.
Sara12
11-30-2010, 09:59 PM
محلولها ، مخلوطهایی همگن هستند. محلولها را معمولا بر حسب حالت فیزیکی آنها طبقه بندی میکنند محلولهای گازی ، محلولهای مایع و محلولهای جامد. بعضی از آلیاژها محلولهای جامدند؛ سکههای نقرهای محلولهایی از مس و نقرهاند و برنج محلولی جامد از روی در مس است. هر آلیاژی محلول جامد نیست، بعضی از آلیاژها مخلوطهایی ناهمگن اند. محلولهای مایع متداولترین محلولها هستند و بیشترین کاربرد را در بررسیهای شیمیایی دارند. هوا هم مثالی برای محلولهای گازی میباشد.
● ماهیت محلولها در یک محلول ، معمولا جزئی که از لحاظ کمیت بیشترین مقدار را دارد، حلال و سایر اجزا را مواد حل شده (حل شونده) میگوییم. اما گاهی آسانتر آن است که جزئی از محلول را با آنکه مقدارش کم است، حلال بنامیم و گاهی اصولا اطلاق نام حلال و حل شونده به اجزای یک محلول (مثلا محلولهای گازی) چندان اهمیتی ندارد. بعضی از مواد به هر نسبت در یکدیگر حل میشوند.امتزاج پذیری کامل از ویژگیهای اجزای تمام محلولهای گازی و بعضی از اجزای محلولهای مایع و جامد است. ولی غالبا، مقدار ماده ای که در حلال معینی حل می شود، محدود است. انحلال پذیری یک ماده در یک حلال مخصوص و در دمای معین، بیشترین مقداری از آن ماده است که در مقدار معینی از آن حلال حل می شود و یک سیستم پایدار به وجود می آورد.
● غلظت محلول برای یک محلول معین ، مقدار ماده حل شده در واحد حجم حلال یا در واحد حجم محلول را غلظت ماده حل شده میگوییم. مهمترین نوع غلظتها که در آزمایشگاه بکار میرود مولاریته و نرمالیته است. مولاریته عبارت است از تعداد مولهای یک ماده که در یک لیتر محلول وجود دارد. به همین دلیل آن را مول بر لیتر یا M/L میگیرند. نرمالیته یک محلول عبارتست از تعداد هم ارز گرمهای (اکی والان گرم های) ماده موجود در یک لیتر محلول. نرمالیته را با N نشان میدهند.
● انواع محلولها ▪ محلولهای رقیق ▪ محلولهایی که غلظت ماده حل شده آنها نسبتا کم است. ▪ محلولهای غلیظ محلولهایی که غلظت نسبتا زیاد دارند. ▪ محلول سیر شده اگر مقدار ماده حل شده در یک محلول برابر با انحلال پذیری آن در حلال باشد، آن محلول را محلول سیر شده مینامیم. اگر به مقداری از یک حلال مایع ، مقدار زیادی ماده حل شونده (بیشتر از مقدار انحلال پذیری آن) بیفزاییم، بین ماده حل شده و حل شونده باقیمانده تعادل برقرار میشود. ماده حل شونده باقیمانده ممکن است جامد ، مایع یا گاز باشد. در تعادل چنین سیستمی ، سرعت انحلال ماده حل شونده برابر با سرعت خارج شدن ماده حل شده از محلول است. بنابراین در حالت تعادل ، غلظت ماده حل شده مقداری ثابت است. ▪ محلول سیر نشده غلظت ماده حل شده در یک محلول سیر نشده کمتر از غلظت آن در یک محلول سیر شده است. ▪ محلول فراسیرشده میتوان از یک ماده حل شونده جامد ، محلول فراسیر شده تهیه کرد که در آن، غلظت ماده حل شده بیشتر از غلظت آن در محلول سیر شده است. این محلول ، حالتی نیم پایدار دارد و اگر مقدار بسیار کمی از ماده حل شونده خالص بدان افزوده شود، مقداری از ماده حل شده که بیش از مقدار لازم برای سیرشدن محلول در آن وجود دارد، رسوب میکند.
● خواص فیزیکی محلولها بعضی از خواص محلولها به دو عامل ، نوع ماده حل شده و غلظت آن در محلول بستگی دارند. این مطلب برای بسیاری خواص فیزیکی محلولها از جمله ، محلولهای آبی درست به نظر میرسد. برای مثال، محلول نمک طعام در آب بی رنگ پرمنگنات پتاسیم در آب، بنفش صورتی است (در اینجا نوع ماده حل شده مطرح است). افزون بر این ، میدانیم که هر چه بر محلول پرمنگنات آب بریزیم و آن را رقیقتر کنیم، از شدت رنگ آن کاسته میشود (اینجا غلظت محلول مطرح است). یکی دیگر از خواص فیزیکی که به این دو عامل بستگی دارد، قابلیت هدایت الکتریکی محلول آبی مواد گوناگون است. چهار خاصه فیزیکی دیگر از محلولها وجود دارد که به نوع و ماهیت ذرات حل شده بستگی ندارد، بلکه فقط به مجموع این ذرات وابسته است. به عبارت دیگر ، تنها عامل موثر بر خواص محلول در اینجا ، غلظت است. چنین خواصی از محلول را معمولا "خواص جمعی محلولها" (خواص کولیگاتیو Colligative properties) مینامند و عبارتند از کاهش فشار بخار ، صعود نقطه جوش ، نزول نقطه انجماد و فشار اسمزی.
▪ کاهش فشار بخار وقتی یک حل شونده غیر فرار در یک حلال حل میشود، فشار بخار آن کاهش مییابد و مقدار کاهش به مقدار حل شونده بستگی دارد. هر چه میزان حل شونده بیشتر باشد، میزان کاهش در فشار بخار بیشتر است. برای مثال اگر دو ظرف را در نظر بگیریم که در آنها مقدار مساوی مایع وجود دارد که یکی محتوی مولکولهای آب خالص و دیگری محتوی محلول قند در آب است، بدیهی است که تعداد مولکولهای آب در واحد حجم از آب قند ، کمتر از آب خالص است. به همین نسبت ، تعداد مولکولهای آب در سطح آب قند ، نیز کمتر میباشد. بنابراین، نسبت مولکولهای پرانرژی آب که قادر به تبخیر از سطح آب قند هستند، کمتر میباشد و در نتیجه فشار بخار محلول کمتر میشود.
▪ افزایش نقطه جوش در اثر حل شدن مقداری حل شونده غیر فرار در یک حلال ، نقطه جوش آن افزایش مییابد. مقدار افزایش فقط به مقدار حل شونده بستگی دارد. برای مثال ، آب در شرایط متعارفی (دمای ۲۵ درجه سانتیگراد و فشار بخار یک اتمسفر یا ۷۶۰ میلی متر جیوه) در ۱۰۰ درجه سانتیگراد می جوشد. اما اگر در آب، مقداری قند مثلا به غلظت یک مولال (یک مول در ۱۰۰۰ گرم آب) بریزیم، فشار بخار محلول آب قند به اندازه ۱۴ میلی متر جیوه کاهش مییابد و در نتیجه محلول در ۵۲/۱۰۰درجه سانتیگراد میجوشد.
▪ کاهش نقطه انجماد وقتی یک حل شونده غیر فرار در یک حلال حل میشود، نقطه انجماد آن کاهش مییابد. بنابراین دمای انجماد محلولهای آبی همیشه کمتر از دمای انجماد آب خالص است. استفاده از این خاصیت در رادیاتور اتومبیل میباشد که برای جلوگیری از یخ زدن آب رادیاتور اتومبیل در زمستان ، به آن مقداری مایع به نام ضد یخ میافزایند. همچنین با اضافه کردن نمک (مانند کلرید سدیم) همراه با شن ریز روی آسفالت خیابانهای شهر ، هیدراته شدن یونهای نمکها مستلزم مصرف مقداری آب است که از ذوب شدن برف فراهم می گردد. بنابراین آب نمک غلیظی فراهم میشود که حتی در ۲۰ درجه زیر صفر منجمد نمیشود.
▪ فشار اسمزی اگر در ظرف U شکلی ، حلال A از مخلوط حلال و حل شونده (B + A) به وسیله یک غشای نیمه تراوا ، جدا شود، چون فقط حلال از غشا عبور میکند، بعد از رسیدن به حالت تعادل ، ارتفاع مایع در قسمت (حاوی B + A) که حل شونده وجود دارد بالا می رود. اگر به این ستون فشار وارد شود تا سطح مایع در دو طرف یکسان شود، این فشاراسمزی است که به علت حل شدن حل شونده غیر فرار در حلال ایجاد شده است. به عکس فرآیند اسمز ، اسمز معکوس گویند که برای شیرین کردن آب استفاده می شود. همچنین برای تعیین جرم مولکولی پلیمرها ، پروتئینها و بطور کلی مولکولهای سنگین از فشار اسمزی استفاده میشود.
Sara12
11-30-2010, 10:01 PM
ا توجه به نفوذ روز افزون سيستم هاي هيدروليکي در صنايع مختلف وجود پمپ هايي با توان و فشار هاي مختلف بيش از پيش مورد نياز است . پمپ به عنوان قلب سيستم هيدروليک انرژي مکانيکي را که توسط موتورهاي الکتريکي، احتراق داخلي و ... تامين مي گردد به انرژي هيدروليکي تبديل مي کند. در واقع پمپ در يک سيکل هيدروليکي يا نيوماتيکي انرژي سيال را افزايش مي دهد تا در مکان مورد نياز اين انرژي افزوده به کار مطلوب تبديل گردد. فشار اتمسفر در اثر خلا نسبي بوجود آمده به خاطر عملکرد اجزاي مکانيکي پمپ ، سيال را مجبور به حرکت به سمت مجراي ورودي آن نموده تا توسط پمپ به ساير قسمت هاي مدار هيدروليک رانده شود.
حجم روغن پر فشار تحويل داده شده به مدار هيدروليکي بستگي به ظرفيت پمپ و در نتيجه به حجم جابه جا شده سيال در هر دور و تعداد دور پمپ دارد. ظرفيت پمپ با واحد گالن در دقيقه يا ليتر بر دقيقه بيان مي شود.
نکته قابل توجه در در مکش سيال ارتفاع عمودي مجاز پمپ نسبت به سطح آزاد سيال مي باشد ، در مورد روغن اين ارتفاع نبايد بيش از 10 متر باشد زيرا بر اثر بوجود آمدن خلا نسبي اگر ارتفاع بيش از 10 متر باشد روغن جوش آمده و بجاي روغن مايع ، بخار روغن وارد پمپ شده و در کار سيکل اختلال بوجود خواهد آورد . اما در مورد ارتفاع خروجي پمپ هيچ محدوديتي وجود ندارد و تنها توان پمپ است که مي تواند آن رامعين کند.
پمپ ها در صنعت هيدروليک به دو دسته کلي تقسيم مي شوند :
1- پمپ ها با جا به جايي غير مثبت ( پمپ های ديناميکي)
2- پمپ های با جابه جايي مثبت
پمپ ها با جا به جايي غير مثبت : توانايي مقاومت در فشار هاي بالا را ندارند و به ندرت در صنعت هيدروليک مورد استفاده قرار مي گيرند و معمولا به عنوان انتقال اوليه سيال از نقطه اي به نقطه ديگر بکار گرفته مي شوند. بطور کلي اين پمپ ها براي سيستم هاي فشار پايين و جريان بالا که حداکثر ظرفيت فشاري آنها به 250psi تا3000si محدود مي گردد مناسب است. پمپ هاي گريز از مرکز (سانتريفوژ) و محوري نمونه کاربردي پمپ هاي با جابجايي غير مثبت مي باشد.
http://iranchem.persiangig.com/image/Picture-gallery/1.jpg
پمپ هاي با جابجايي مثبت : در اين پمپ ها به ازاي هر دور چرخش محور مقدار معيني از سيال به سمت خروجي فرستاده مي شود و توانايي غلبه بر فشار خروجي و اصطکاک را دارد . اين پمپ ها مزيت هاي بسياري نسبت به پمپ هاي با جابه جايي غير مثبت دارند مانند مانند ابعاد کوچکتر ، بازده حجمي بالا ، انعطاف پذيري مناسب و توانايي کار در فشار هاي بالا ( حتي بيشتر از psi)
پمپ ها با جابه جايي مثبت از نظر ساختمان :
1- پمپ های دنده ای
2 - پمپ های پره ای
3- پمپ های پيستونی
پمپ ها با جابه جايي مثبت از نظر ميزان جابه جايي :
1- پمپ ها با جا به جايي ثابت
2- پمپ های با جابه جايي متغيير
در يک پمپ با جابه جايي ثابت (Fixed Displacement) ميزان سيال پمپ شده به ازاي هر يک دور چرخش محور ثابت است در صورتيکه در پمپ هاي با جابه جايي متغير (Variable Displacement) مقدار فوق بواسطه تغيير در ارتباط بين اجزاء پمپ قابل کم يا زياد کردن است. به اين پمپ ها ، پمپ ها ي دبي متغير نيز مي گويند.
بايد بدانيم که پمپ ها ايجاد فشار نمي کنند بلکه توليد جريان مي نمايند. در واقع در يک سيستم هيدروليک فشار بيانگر ميزان مقاومت در مقابل خروجي پمپ است اگر خروجي در فشار يک اتمسفر باشد به هيچ وجه فشار خروجي پمپ بيش از يک اتمسفر نخواهد شد .همچنين اگر خروجي در فشار 100 اتمسفر باشد براي به جريان افتادن سيال فشاري معادل 100 اتمسفر در سيال بوجود مي آيد.
پمپ هاي دنده اي Gear Pump
اين پمپ ها به دليل طراحي آسان ، هزينه ساخت پايين و جثه کوچک و جمع و جور در صنعت کاربرد زيادي پيدا کرده اند . ولي از معايب اين پمپ ها مي توان به کاهش بازده آنها در اثر فرسايش قطعات به دليل اصطکاک و خوردگي و در نتيجه نشت روغن در قسمت هاي داخلي آن اشاره کرد. اين افت فشار بيشتر در نواحي بين دنده ها و پوسته و بين دنده ها قابل مشاهده است.
پمپ ها ي دنده اي :
1- دنده خارجی External Gear Pumps
2– دنده داخلی Internal Gear Pumps
3- گوشواره ای Lobe Pumps
4- پيچی Screw Pumps
5- ژيروتور Gerotor Pumps
1- دنده خارجي External Gear Pumps
در اين پمپ ها يکي از چرخ دنده ها به محرک متصل بوده و چرخ دنده ديگر هرزگرد مي باشد. با چرخش محور محرک و دور شدن دنده هاي چرخ دنده ها از هم با ايجاد خلاء نسبي روغن به فضاي بين چرخ دنده ها و پوسته کشيده شده و به سمت خروجي رانده مي شود.
لقي بين پوسته و دنده ها در اينگونه پمپ ها حدود (0.025 mm ) مي باشد.
http://iranchem.persiangig.com/image/Picture-gallery/2.jpg
افت داخلي جريان به خاطر نشست روغن در فضاي موجود بين پوسته و چرخ دنده است که لغزش پمپ (Volumetric efficiency ) نام دارد.
با توجه به دور هاي بالاي پمپ که تا rpm 2700 مي رسد پمپاژ بسيار سريع انجام مي شود، اين مقدار در پمپ ها ي دنده اي با جابه جايي متغيير مي تواند از 750 rpm تا 1750 rpm متغيير باشد. پمپ ها ي دنده اي براي فشارهاي تا (كيلوگرم بر سانتي متر مربع200 ) 3000 psi طراحي شده اند که البته اندازه متداول آن 1000 psi است.
2– دنده داخلي Internal Gear Pumps
اين پمپ ها بيشتر به منظور روغنکاري و تغذيه در فشار هاي کمتر از 1000 psi استفاده مي شود ولي در انواع چند مرحله اي دسترسي به محدوده ي فشاري در حدود 4000 psi نيز امکان پذير است. کاهش بازدهي در اثر سايش در پمپ هاي دنده اي داخلي بيشتر از پمپ هاي دنده
http://iranchem.persiangig.com/image/Picture-gallery/3.jpg
3- پمپ هاي گوشواره اي Lobe Pumps
اين پمپ ها از خانواده پمپ هاي دنده اي هستند که آرامتر و بي صداتر از ديگر پمپ هاي اين خانواده عمل مي نمايد زيرا هر دو دنده آن داراي محرک خارجي بوده و دنده ها با يکديگر درگير نمي شوند. اما به خاطر داشتن دندانه هاي کمتر خروجي ضربان بيشتري دارد ولي جابه جايي حجمي بيشتري نسبت به ساير پمپ هاي دنده اي خواهد داشت.
http://iranchem.persiangig.com/image/Picture-gallery/4.jpg
4- پمپ هاي پيچي Screw Pumps
پمپ پيچي يک پمپ دنده اي با جابه جايي مثبت و جريان محوري بوده که در اثر درگيري سه پيچ دقيق (سنگ خورده) درون محفظه آب بندي شده جرياني کاملا آرام ، بدون ضربان و با بازده بالا توليد مي کند. دو روتور هرزگرد به عنوان آب بندهاي دوار عمل نموده و باعث رانده شدن سيال در جهت مناسب مي شوند.حرکت آرام بدون صدا و ارتعاش ، قابليت کا با انواع سيال ، حداقل نياز به روغنکاري ، قابليت پمپاژ امولسيون آب ، روغن و عدم ايجاد اغتشاش زياد در خروجي از مزاياي جالب اين پمپ مي باشد.
5- پمپ هاي ژيروتور Gerotor Pumps
عملکرد اين پمپها شبيه پمپ هاي چرخ دنده داخلي است. در اين پمپ ها عضو ژيروتور توسط محرک خارجي به حرکت در مي آيد و موجب چرخيدن روتور چرخ دندهاي درگير با خود مي شود.
در نتيجه اين مکانيزم درگيري ، آب بندي بين نواحي پمپاژ تامين مي گردد. عضو ژيروتور داراي يک چرخ دندانه کمتر از روتور چرخ دنده داخلي مي باشد.
حجم دندانه کاسته شده ضرب در تعداد چرخ دندانه چرخ دنده محرک ، حجم سيال پمپ شده به ازاي هر دور چرخش محور را مشخص مي نمايد.
http://iranchem.persiangig.com/image/Picture-gallery/5.jpg
Sara12
11-30-2010, 10:02 PM
عنوان: تعيين سرعت واكنش
هدف آزمایش: اثر غلظت برسرعت واكنش
وسایل مورد نياز:
ارلن ، پی پت ، پي ست ، کرنومتر ، پی ست
مواد مورد نياز:
محلول پتاسیم یدات0.02M ، محلول سولفیت سدیم
تئوري:
سینتیک شیمیایی:
سینتیک شیمیایی یا سینتیک واکنش شاخهای از علم است که به مطالعهی سرعت فرآیندهای شیمیایی و عوامل موثر بر آنها میپردازد.
سرعت واکنش :
عبارت از تغییر غلظت هر یک از مواد اولیه یا مواد حاصل نسبت به زمان انجام واکنش است
1- اندازه گیری سرعت واکنش بین ید و استون:
2- بررسی بعضی از عوامل مؤثر بر سرعت واکنشهای شیمیایی: مانند غلظت و کاتالیزور
http://iranchem.persiangig.com/document/gozaresh/soate-vakonesh/7.bmp
سرعت واکنش؟
کمیتی مثبت است که میزان تغییر غلظت یکی از واکنش دهنده ها یا محصول واکنش را نسبت به واحد زمان (ثانیه، دقیقه، ساعت و ... ) نشان می دهد.
عوامل مؤثر بر سرعت واکنش:
1- نوع واکنش دهنده
2- غلظت واکنش دهنده ( با افزایش غلظت، سرعت افزایش می یابد )
3- دما (افزایش دما باعث افزایش سرعت می شود ،گاهی با افزایش 10 درجه، سرعت 2 تا 3 برابر می شود ) دما روی k تاثیر دارد ، روی سرعت هم تاثیر می گذارد.
K= ثابت سرعت ؛ A= فاکتور فرکانس؛ = انرژی فعالسازی
R= ثابت جهانی گازها؛ T= دما ( کلوین )
4-کاتالیزور ( در وجود کاتالیزور واکنش با سرعت بیشتری انجام می گیرد )
مثالهایی از واکنش های فوق سریع :
تشکیل رسوب نقره کلرید به هنگام مخلوط شدن محلولهای حاوی یون های کلرید و نقره
تشکیل آب به محض مخلوط شدن محلول های اسید و باز در معادله ی شماره ی(2) و نشانه ی غلظت مولی واکنش دهنده های A و B است.
K ثابت سرعت واکنش (rate constant ) نامیده می شود.
m و n مرتبه ی واکنش نسبت به واکنش دهنده های A و B است.
انرژی فعالسازی واکنش :
حداقل انرژی لازم برای فراهم کردن کمترین تحرک واکنش دهنده ها در شروع واکنش است. رابطه ی بین K ( ثابت سرعت ) ، ( انرژی فعالسازی ) و T ( دما به
درجه ی کلوین ):
(3)اگر R ( ثابت گازها ) را برابر 8.314
J/mol .k در معادله ی (3) قرار دهیم، بر حسب J/mol محاسبه خواهد شد. در عمل با اندازه گیری k یک واکنش در دماهای مختلف می توان آن واکنش را از روی منحنی به دست آورد.
در این آزمایش سرعت واکنش بین ید و استون ( واکنش 1 ) را اندازه گیری می کنیم. سرعت این واکنش علاوه بر غلظت ید و استون به غلظت یون هیدروژن نیز بستگی دارد. بر طبق معادله ی (2) رابطه ی سرعت برای این واکنش عبارت است از :
m و n و p مرتبه ی واکنش نسبت به استون، ید و یون هیدروژن است.
مرتبه ی کل واکنش = m + n + p
سرعت این واکنش از تغییرات غلظت به مدت زمان تغییر غلظت به دست می آید.
اگر t زمان لازم باشد تا رنگ محلول مربوط به غلظت اولیه ناپدید شود، سرعت واکنش با استفاده از معادله ی (5) برابر خواهد شد با :
غلظت اولیه ی ید است.
می توان سرعت واکنش را با تغییر دادن غلظت موارد اولیه تغییر داد.
برای مثال اگر غلظت اولیه ی استون را نسبت به مخلوط شماره ی (I) دو برابر کنیم، اما غلظت ید و را ثابت نگهداریم، معادله ی سرعت برای مخلوط شماره ی (II) تغییر خواهد کرد. معادله ی (7ب ) معادله ی سرعت را برای مخلوط شماره ی (II) نشان می دهد :
تاثیر سرعت روی غلظت با استفاده از روابط ریاضی:
از تقسیم دو رابطه ی (7) بر یکدیگر می توان m ( مرتبه ی واکنش نسبت به استون ) را بدست آورد :
با اندازه گیری سرعت واکنش در مخلوط های (I) و (II) می توان نسبت سرعت ها را که مساوی است پیدا کنیم. سپس معادله را برای محاسبه ی m از طریق لگاریتم حل می کنیم. اگر نسبت عددی را برابر Y فرض کنیم، جواب آن بدین شکل است :
به روش مشابه نیز می توانیم مرتبه ی واکنش را نسبت به غلظت یون و تعیین کنیم. سپس با داشتن مرتبه ی هر واکنش دهنده، غلظت آنها و سرعت واکنش و K را بدست آوریم.
روش کار :
ابتدا درهرمرحله مقدارپتاسیم یدات وآب مقطر رادرارلن بریزید،سپس بااضافه کردن مقدار سولفیت سدیم(نشاسته)کرنومترراآغاز وباکدر شدن محلول(نشانه پایان واکنش)کرنومتررامتوقف وزمان رایادداشت کنید.این کاررابرای مراحل با غتظت های متفاوت پتاسیم یدات انجام دهید ونتایج رایادداشت کنید.
جدول حاصل از آزمایش:
http://iranchem.persiangig.com/document/gozaresh/soate-vakonesh/5.bmp
جدول حاصل از محاسبات:
lnCA/CA. CA/CA. K
(1/s)
R
(mol/m3.s) t
( s) CA.=.[KIO3]
(mol/Lit) CA=[KIO3]
(mol/Lit)
2.3- 0.1 0.016 0.013 143 0.02 0.002
1.89- 0.15 0.02 0.032 92 0.02 0.003
1.6- 0.2 0.022 0.057 70 0.02 0.004
0.91- 0.4 0.026 0.235 34 0.02 0.008
نمودار :
http://iranchem.persiangig.com/document/gozaresh/soate-vakonesh/6.bmp
منابع و مآخذ:
http://iranchem.blogfa.com/post-136.aspx http://chemistry-dept.talif.sch.ir/
http://edu.tebyan.net/ http://daneshnameh.roshd.ir/
www.iran.eng.com (http://www.iran.eng.com/)
Sara12
11-30-2010, 10:03 PM
آمینها و سایر ترکیبات حاوی نیتروژن از جمله فراوانترین مولکولهای آلی هستند. همه آمینها خصلت بازی دارند (آمینهای نوع اول و دوم میتوانند به عنوان اسید هم عمل کنند) ، پیوند هیدروژنی تشکیل میدهند، و در واکنشهای جانشینی به عنوان هسته دوست عمل کنند. پس در بسیاری از جنبهها شیمی آمینها با شیمی الکلها و اترها شباهت دارد. ولی تفاوتهایی هم در فعالیت دارند، زیرا الکترونگاتیوتیه نیتروژن کمتر از اکسیژن است.
بسیاری از ترکیبات فعال بیولوژیکی حاوی نیتروژن هستند. بسیاری از آمینهای ساده به عنوان دارو مصرف میشوند. علاوه بر کاربرد آمینها در داروسازی و تفکیک انانیتومرها ، آمینها موارد استفاده گوناگونی در صنعت دارند. هگزا متیلن دی آمین (HMDA) یک آمین ، با اهمیت تجاری است. که ماده اولیه تهیه صنعتی نایلون است. این ماده با هگزان دی اوییک (آدپیک) اسید ، کوپلیمر میشود و نایلون 6 ، 6 ایجاد میگردد. از این نایلون جوراب ، جامههای کشباف و میلیونها تن الیاف نساجی ساخته میشود.
http://iranchem.persiangig.com/image/5856d6f2f6.gif
برای شناسایی آمینها از تست های زیر استفاده می شود ، علاوه بر این انحلال پذيري و ويژگي بازي آمينها یکی از بهترين راههای شناسايي آنها ست. ( می توانید به بخش حلالیت مراجعه کنید).
1- آزمايش هينزبرگ
1/0 ميلي ليتر از آمين مايع يا 1/0 گرم از آمين جامد و 2/0 گرم پارا – تولوئن سولفونيل کلريد و 5 ميلي ليتر محلول سديم هيدروکسيد 10 % را در يک لوله آزمايش کوچک بريزيد. درب لوله را کاملاً ببنديد و براي 3-5 دقيقه آنرا تکان دهيد. سپس درب لوله را برداريد و در حاليکه آنرا تکان مي دهيد براي يک دقيقه بوسيله حمام بخار حرارت دهيد. بعد لوله را بگذاريد سرد شود و يک قطره از آنرا روي کاغذ PH قرار دهيد چنانچه PH آن بازي نيست، مقدار بيشتري سديم هيدروکسيد اضافه نماييد تا به PH بازي برسد. چنانچه رسوب تشکيل شود، مخلوط بازي را با افزايش 5 ميلي ليتر آب رقيق نماييد و خوب تکان دهيد. اگر رسوب نامحلول باشد، ممکن است سولفون آميد دو استخلافي تشکيل شده باشد که در اينصورت آمين نوع دوم است. ( توجه : رسوب نامحلول ممکن است پارا – تولوئن سولفونيل کلريد شد که در واکنش شرکت نکرده است ). اگر بعد از رقيق کردن مخلوط رسوبي باقي نماند، يا اگر از ابتدا تشکيل نشده بود، به دقت به محلول هيدروکلريک اسيد 5 % اضافه نماييد و با کاغذ ليتموس PH آن را براي اسيدي بودن بررسي کنيد. اگر در اين مرحله رسوب ايجاد شد، دليل بر تشکيل سولفون آميد يک استخلافي است يعني مجهول، آمين نوع اول است. اگر هيچگونه واکنشي انجام نشد، مجهول ممکن است آمين نوع سوم باشد.
چنانچه نتايج حاصل از روش بالا واضح نبود مي توانيد به جاي پارا – تولوئن سولفونيل از 2/0 ميلي ليتر بنزن سولفونيل کلريد استفاده کنيد. در صورت استفاده از اين واکنشگر محصول جامد تشکيل نمي شود و محصول بصورت روغني است.
http://iranchem.persiangig.com/image/e559ece740.gif
2- نيترو اسيد
1/0 گرم آمين را در 2 ميلي ليتر اب حل کنيد و به اين محلول 8 قطره سولفوريک اسيد غليظ اضافه کنيد، اين مخلوط را در يک لوله آزمايش بزرگ نهيه نماييد و سپس در حمام يخ بگذاريد دماي آن بايد بين صفر تا 5 درجه باشد. در يک لوله آزمايش ديگر 2 ميلي ليتر محلول آبي سديم نيتريت 5 % بريزيد و بگذاريد سرد شود و در لوله آزمايش سوم 2 ميلي ليتر محلول آبي سديم هيدروکسيد 10 % که 1/0 گرم بتا- نفتول در آن حل شده است بريزيد و اين لوله را هم در حمام يخ قرار دهيد. محلول سديم نيتريت سرد را قطره قطره به محلول آمين سرد شده اضافه نماييد وهر بار خوب بهم بزنيد. با دقت به خروج گاز نيتروژن نگاه کنيد. بايد توجه داشته باشيد گاز نيتروژن بي رنگ است اما گاز نيتروژن اکسيد قهوه يي است. متصاعد شدن گاز نيتروژن در دماي 5 درجه و يا کمتر از آن نماياننده آمين آليفاتيک نوع اول (RNH2) است. تشکيل روغن زرد رنگ يا رسوب نشان دهنده آمين نوع دوم است. آمينهاي نوع سوم آليفاتيک در شرايط معمولي با اسيد نيترو واکنش نمي دهند و نيتروژن آمينهاي نوع سوم آروماتيک با اسيد نيترو واکنشي نمي دهد، اما بين + Na و حلقه آروماتيک، واکنش استخلافي الکترون دوستي انجام مي شود.
اگر در 5 درجه خروج گاز مشاهده نشد و يا خروج گاز بسيار کم بود. نيمي از محلول را در يک لوله آزمايش بريزيد و با آرامي آنرا حرارت دهيد تا به دماي اطاق برسد. در اين دما خروج حبابهاي گاز نيتروژن قابل رؤيت است. که نشان دهنده آمين آروماتيک نوع اول (ArNH2) است. به نصف ديگر محلول که باقيمانده است قطره قطره محلول β- نفتولدر سود اضافه نماييد. چنانچه رسوب قرمز رنگ تشکيل شود، قطعاً مجهول آمين آروماتيک نوع اول (ArNH2) است.
3- PH محلول آبي
چنانچه ترکيب در آب محلول است، با حل کردن مقداري از آن در آب محلول آبي آنرا تهيه نماييد و PH آنرا با کاغذ PH بررسي نماييد. چنانچه ترکيب آمين باشد، بازي است و PH محلول آن بالا است. اگر ترکيب در آب نامحلول بود بايد آنرا در محلول اتانول – آب و يا دي اکسان – آب حل کنيد.
4- استيل کلريد
آمينها با واکنشگر استيل کلريد واکنش مي دهند ( با آزاد شدن گرما ). 5/0 ميلي ليتر از آمين را در يک لوله آزمايش کوچک بريزيد و سپس با احتياط 10 تا 15 قطره استيل کلريد را قطره قطره به امين اضافه کنيد، ايجاد حرارت و گاز هيدروژن کلريد نشان دهنده مثبت بودن نتيجه آزمايش است. چنانچه مخلوط آزمايش را با آب رقيق کنيد، براي آمينه نوع اول و نوع دوم رسوب استاميد تشکيل مي شود. براي آمينهاي نوع سوم چنين نتيجه يي مشاهده نمي شود.
تهيه مشتق
سودمندترين مشتقات براي آمينهاي نوع اول و دوم، استاميد، بنزآميد و پارا– تولوئن سولفون آميد هستند. متداولترين مشتقي که براي آمينهاي نوع اول و دوم و سوم مي توان تهيه کرد نمک پيکريک اسيد يعني پيکرات آمين است. يکي از مفيدترين مشتقها براي آمين نوع سوم نمکهاي نوع چهارم است که از ترکيب آمين با متيل يديد قابل تهيه است.
1- استاميد
در يک ارلن ماير کوچک حدود يک ميلي مول آمين و 5/0 ميلي ليتر استيک ايندريد بريزيد. مخلوط را براي 5 دقيقه حرارت دهيد سپس 5 ميلي ليتر آب به آن بيافزاييد و محلول را بشدت بهم بزنيد تا محصول بصورت رسوب ظاهر شود و استيک ايندريد اضافي هيدروليز شود. چنانچه محصول بصورت بلور رسوب نشد با يک بهمزن شيشه يي ديواره ظرف را خراش دهيد. با صاف کردن مخلوط روي قيف بوخنر، بلورها را جدا نماييد و چند بار با محلول هيدروکلريک اسيد 5 % سرد بشوييد، سپس براي تخليص آنرا با مخلوط حلال، متانول – آب متبلور نماييد.
براي آمينهاي آروماتيک يا آنهايي که خصلت بازي زياد ندارند، به عنوان حلال آنها و همچنين کاتاليزور واکنش بايد از پيريدين استفاده شود. چنانچه از پيريدين استفاده شود، مخلوط بايد مدت بيشتري ( بيش از يک ساعت ) حرارت داده شود و واکنش را در بالني که مجهز به مبرد است رفلاکس نمود. بعد از رفلاکس، بايد مخلوط واکنش را با 5 تا 10 ميلي ليتر سولفوريک اسيد 5 % استخراج نمود تا پيريدين آن جدا شود.
2- بنزآميد
الف- در يک لوله آزمايش حدود يک ميلي مول آمين و يک ميلي ليتر محلول سديم هيدروکسيد 10 % بريزيد و سپس 5/0 گرم بنزوئيل کلريد ( يا پارا – نيتروبنزوئيل کلريد ) به مخلوط بيافزاييد. درب لوله را ببنديد و مخلوط ر براي 10 دقيقه بشدت تکان دهيد. بعد از تکان دادن با افزايش هيدروکلريک اسيد رقيق به مخلوط، PH آنرا به حدو 8-7 برسانيد. رسوب را روي قيف بوخنر صاف کنيد و آنرا با آب سرد کاملاً بشوييد و براي تخلسص از حلال مخلوط، اتانول – آب آنرا متبلور نماييد.
3- پيکرات
2/0 گرم مجهول را در 5 ميلي ليتر اتانول حل کنيد و سپس 5 ميلي ليتر محلول اشباع شده پيکريک اسيد در اتانول به آن اضافه نماييد. محلول را حرارت دهيد تا به جوش آيد و سپس بگذاريد در دماي اطاق سرد شود. رسوبات را روي قيف بوخنر صاف کنيد و با کمي اتانول سرد آنرا بشوييد.
4- متيوديد
در يک لوله آزمايش بزرگ به حجم مساوي از آمين و متيل يديد ( 5/0 ميلي ليتر از هر کدام ) را مخلوط نماييد. مخلوط را براي چند دقيقه بگذاريد بماند. سپس آنرا براي 5 دقيقه روي حمام بخار رفلاکس نماييد. سپس نمونه را بگذاريد سرد شود و متيوديد در اثر سرد شدن متبلور مي شود. اگر بلورها ظاهر نشد با بهمزن شيشه يي ديواره ظرف را خراش دهيد. مخلوط با قيف بوخنر صاف کنيد و بلورها را جدا کنيد و براي تخليص آنها را با حلال اتانول يا اتيل استات متبلور نماييد.
Sara12
11-30-2010, 10:05 PM
مقدمه و تئوری:
فشار بخار يك ماده جامد با دما تغيير مي كند. به همين دليل، بعضي تركيبات جامد بدون اينكه از فاز مايع عبور كنند به آساني و مستقيما به بخار تبديل مي شوند. اين فرايند، تصعيد ناميده مي شود.
چون بخار را مي توان دوباره جامد كرد از اين تبديل مي توان به عنوان روشي براي تخليص مواد استفاده كرد. عمل تخليص وقتي به خوبي انجام پذير است كه فشار بخار ناخالصيها مشخصا كمتر از فشار بخار ماده تصعيد شدني باشد.
به عبارتی دیگر تنها می توان مواد جامدی را از هم جدا کرد که اختلاف فشار بخار زیادی از یکدیگر دارند.
در این روش نمونه در دمایی پایین تر از نقطه ی ذوب گرم می شود و مستقیماً از حالت جامد به صورت بخار در می آید و سپس بخار حاصل در سطح سردی به حالت جامد متبلور می شود.
تصعید جامدات:
تصعيد خاصيتي است كه معمولا در مواد نسبتا غير قطبي با ساختمان بسيار متقارن ديده مي شود. تركيبات متقارن، غالبا نقطه ذوب و فشار بخار بالايي دارند.
تبخير پذيري آسان اين مواد از سطح جامد را معلول ضعيف بودن نيروهاي بين مولكولي مي دانند.
http://tbn3.google.com/images?q=tbn:ohN3FkKrXpnINM:http://www.practicalchemistry.org/data/images/originals/sublimation-air-freshener-174.jpg http://tbn1.google.com/images?q=tbn:PWSNN9_qiArmsM:http://upload.wikimedia.org/wikipedia/commons/9/98/Sublimation_apparatus.png http://tbn2.google.com/images?q=tbn:sSFCLdPI8rDTdM:http://www.pharmainfo.net/files/images/stories/article_images/Steps%2520Involved%2520in%2520sublimation.jpg
روش کار:
- مقداری نفتالین ناخالص را بر روی شیشه ساعت ریخته،
- انتهای یک قیف شیشه ای تمیز را مسدود ( با کاغذ یا پنبه ) و با دقت وزن می کنیم(=25.88g)
- قیف را روی شیشه ساعت حاوی نفتالین برگردانده طوری که هیچ منفذی به بیرون نداشته باشد.
- مجموع قیف و شیشه ساعت را به ملایمت گرم می کنیم؛ بهتر است براي گرم كردن از حمام بخار استفاده شود. چنانچه حمام بخار در دسترس نبود، بشري را كه قطر دهانه آن متناسب با قطر شيشه ساعت باشد تا دو سوم حجم از آب پر كنيد و شيشه ساعت و قيف را روي آن بگذاريد و آب را به ملايمت گرم كنيد. ( 30 الی 45 دقیقه آنرا به همان حال بگذارید )
- طی این مدت در اثر حرارت نفتالین تصعید شده و روی قیف سرد متراکم می شود.
- اجازه می دهیم سیستم کمی سرد شود. حال قیف را توزین کرده (=26.43 )
و وزن بلورها را گزارش می کنیم :
26.43 - 25.88 = 0.55 g
Sara12
11-30-2010, 10:06 PM
هدف از آزمايش: ارائه يک ديد عملي از قانون فوريه و بدست آوردن مقدار K براي فلزات مي باشد.
انتقال گرما ، گذار انرژي بر اثر اختلاف دما است . اختلاف دما به عنوان يک نيروي محرکه ( Driving Force ( سبب انتقال گرما مي شود . حرکت مولکول ها در کنار هم و ارتعاش آنها سبب مي شود که گرما از يک مولکول به مولکول مجاور منتقل شده و در نتيجه گرما منتقل مي گردد .
هرگاه در يك محيط يا ميان دو محيط اختلاف دما وجود داشته باشد و دماي محيط ها يکسان نباشد ، انتقال گرما رخ مي دهد .
انواع مختلف انتقال گرما را شيوه هاي آن مي گويند يعني راه هاي انتقال گرما را شيوه هاي آن مي گويند .
وقتي در محيط ساكني ، كه مي تواند جامد يا سيال باشد ، شيب دما وجود داشته باشد ، براي انتقال گرمايي كه در محيط روي مي دهد از واژه رسانش ( Conduction) و براي انتقال گرماي بين سطح و سيالي متحرك ، كه دماي آنها با هم متفاوت است ، از واژه جابجايي ( Convection) استفاده مي شود . نوع سوم انتقال گرما تشعشع گرمايي ( Radiation ) است .
تمام سطوح با دماي معين انرژي را به شكل امواج الكترومغناطيس گسيل مي دارند يعني هر سطح در هر دمايي مي تواند از خود تابش ايجاد کند . از اين رو ، در نبود محيط واسط ، ميان دو سطح با دماهاي مختلف انتقال گرماي خالص تشعشعي وجود دارد و اگر هم ميان دو سطح محيط واسطي وجود داشته باشد انتقال گرما مي تواند از طريق رسانش و يا جابجايي و يا هر دو اينها صورت بگيرد . در زير راههاي مختلف انتقال گرما را بررسي مي کنيم .
تئوري
براي انتقال گرما روش هاي متعددي وجود دارد که ذکر شد در اينجا به شرح اين سه روش مي پردازيم .
رسانش :
رسانش مستقيماً به حرکت مولکولها و اتمها وابسته است اين فرايندها در سطح مولکولي و اتمي است كه اين نوع انتقال گرما را تداوم مي بخشند . رسانش را به عنوان انتقال انرژي از ذرات پر انرژي به ذرات كم انرژي ماده ، بر اثر بر هم كنش هاي بين آنها مي توان دانست يعني در اين شيوه برخورد اتمها و يا مولکولهاي مجاور به همديگر سبب انتقال گرما مي گردد .
با در نظر گرفتن يك گاز و با استفاده از مفاهيم ترموديناميكي ، مكانيزم فيزيكي رسانش به ساده ترين وجه توضيح داده مي شود . گازي را در نظر مي گيريم كه در آن شيب دما وجود دارد يعني ميان دو نقطه از آن اختلاف دما وجود دارد و فرض كنيم كه هيچ حركت كپه اي وجود ندارد گاز مي تواند فضاي بين دو سطحي را ، كه در دما هاي متفاوت قرار دارند ، اشغال كند . دما در هر نقطه به انرژي مولكول هاي گاز موجود در مجاو.رت آن نقطه نسبت داده مي شود . اين انرژي به حركت هاي انتقالي تصادفي و همچنين به حركت هاي چرخشي و نوساني مولكول ها ارتباط دارد .
دماهاي بالاتر به انرژي هاي مولكولي بالاتر نسبت داده مي شود ، و با برخورد مولكول ها به يكديگر
( پديده اي كه دائماً روي مي دهد ) ، انرژي از مولكول هاي پر انرژي به مولكول هاي كم انرژي منتقل مي شود . بنابراين وقتي شيب دما وجود دارد ، انتقال انرژي رسانشي در جهت كاهش دما روي مي دهد . در شكل ( a ) مولكول ها صفحه فرضي xo را از بالا و پايين با حركت تصادفي خود دائماً قطع مي كنند . ولي ، مولكول هاي بالايي از مولكول هاي پاييني دماي بيشتري دارند . بنابراين در اين حالت ، انتقال خالص انرژي در جهت x مثبت وجود دارد . انتقال خالص انرژي توسط حركت تصادفي مولكولي را پخش انرژي مي گويند .
http://miadsoft.persiangig.com/document/miadsoft/zib.bmp
برای مشاهده تصویر در اندازه اصلی کلیک کنید (http://miadsoft.persiangig.com/document/miadsoft/zib.bmp)
در مايعات نيز وضع به همين منوال است ، ولي مولكول ها به هم نزديكترند و بر هم كنش هاي مولكولي قويتر و تكراري تر است . بطور مشابه ، رسانش در اجسام جامد را به فعاليت اتمي ، به شكل ارتعاشات شبكه اي ،
مي توان نسبت داد . در ديدگاه جديد ، انتقال انرژي را به امواج شبكه اي ، كه با حركت اتمي ايجاد مي شود ، ارتباط مي دهد . در نارساناها ، انتقال انرژي توسط حركت انتقالي الكترون هاي آزاد نيز روي مي دهد .
فرايند هاي انتقال گرما را بر حسب معادله هاي آهنگ مربوط مي توان بطور كمي بيان كرد . از اين معادله ها براي محاسبه مقدار انتقال انرژي در زمان واحد مي توان استفاده كرد . معادله آهنگ رسانش گرما توسط قانون فوريه به دست داده مي شود . قانون فوريه بيان مي کند که شار گرماي به وجود آمده در يک رسانا متناسب است با اختلاف دماي دو سر رسانا و با ظول آن رسانا نسبت عکس دارد با در نظر گرفتن ثابت يا همان ضريب ثابتي مي توان اين تناسب را به تساوي تبديل کرد براي سطح مسطحي يك بعدي شکل ( c ) كه توزيع دماي( T(x را دارد ، معادله آهنگ بصورت زير است :
شار گرماي عبارت است از آهنگ انتقال گرما در جهت x براي مساحت واحد عمود بر جهت انتقال ، كه با شيب دما ، dT/dx ، در اين جهت متناسب است . ثابت تناسب k يك خاصيت انتقال است و به آن رسانندگي گرمايي ( W/m.K) مي گويند و مشخصه اي از مواد ديوار است . علامت منفي به اين دليل است كه گرما در جهت كاهش دما منتقل مي شود . با دو فرض خطي بودن توزيع دما و پايدار بودن حالت تحليل مساله مي توان رابطه زير را به دست آورد .
با داشتن اين دو رابطه مي توان معادله شار گرما را با داشتن ضريب تناسب و دماهاي دو طرف سطح و ضخامت سطح يافت .که در اين رابطه منظور از x انتقال حرارت در راستاي x است از معادله بالا شار گرما ، يعني آهنگ انتقال گرما براي مساحت واحد ، بدست مي آيد . با ضرب اين شار گرمايي در مساحت سطح مورد بحث مي توان مقدار گرماي مورد نظر را يافت .
جابجايي : ( Convection )
گرما از طريق جابجايي نيز منتقل مي گردد در اين شيوه حرکت مولکولها و ارتعاشات مولکولها سبب انتقال گرما نيز مي شود .
عده زيادي از مولکولها که در کنار يک سطح قرار گرفته اند با آن سطح در تبادل دمايي هستند و با آن سطح همدما مي شوند . اين عده به علت تفاوت درمايي در بين دو نقطه از سيال از جاي خود حرکت کرده و به آنجايي که دماي کمتري دارد منتقل مي گردند . اين انتقال همراه با حمل گرما توسط اين مولکول ها همراه است و به اين ترتيب مولکولها گرما را از يک نقطه با دماي بيشتر به نقطه ديگري با دماي کمتر منتقل مي کنند . اين حرکت توده مولکولها را حرکت کپه اي مي نامند . پس انتقال گرما در پديده جابجايي حاصل ترکيب دو نوع انتقال گرماي رسانش و گرماي ناشي از اين حرکت کپه اي است .
معمولاً از واژه كنوكسيون براي اين انتقال تركيبي و از واژه ادوكسيون براي انتقال ناشي از حركت كپه اي سيال استفاده مي شود .
در پديده جابجايي بايد سيال داراي حرکت باشد و از طرفي دماي سطح و سيال با هم ديگر تفاوت داشته باشند اگر سيال داراي حرکت نباشد مکانيسم انتقال حرارت بيشتر توسط رسانش صورت مي گيرد هرچند که جابجايي طبيعي نيز بايد مورد توجه قرار گيرد و اگر دماها برابر باشند به علت نبودن گراديان دمايي هيچ گونه انتقال حرارتي انجام نمي گيرد .
اگر دماي سطح از دماي سيال بيشتر باشد جهت انتقال دما از سطح به سيال است و اگر دماي سيال از دماي سطح بيشتر باشد جهت انتقال گرما برعکس مي شود .
در عبور سيال از يک سطح با دماهاي متفاوت مي توان دو لايه مرزي را براي فرايند متصور شد يک لايه مرزي سرعت و ديگري لايه مرزي حرارت که اين دو لايه ممکن است بر هم افتاده و يا کاملاً متفاوت باشند .
انتقال گرماي جا به جايي توسط حركت تصادفي مولكولي و حركت كپه اي سيال در لايه مرزي تداوم مي يابد . حركت تصادفي مولكولي ( پخش ) در نزديكي سطح ، كه در آنجا سرعت سيال كم است ، سهم اصلي را دارد . يعني اينکه در اين ناحيه به علت نبودن سرعت بالا سيال نمي تواند به طور مناسب با سطح تبادل حرارتي انجام دهد از طرفي در فصل مشترك بين سطح و سيال ( y = 0 ) سرعت سيال صفر است و گرما فقط توسط مكانيزم پخش منتقل مي شود يعني ئر اين ناحيه بيشتر رسانش کار انتقال گرما را انجام مي دهد .
جابجايي را مي توان بنا به نحوه انجام فرايند به دو دسته واداشته ( Force Convection) و يا جايجايي آزاد(Natural Convection) تقسيم کرد .
اگر جابجايي توسط وسائل مکانيکي مانند فن , پمپ و يا توربين انجام شود جابجايي را واداشته و اگر اختلاف چگالي سبب اين جابجايي شود آن را آزاد مي نامند .
در برخي مواقع ممکن است ترکيبي از هر دو فراين را با هم داشته باشيم و از هردو فرايند استفاده کنيم يعني نرخ انتقال توسط جابجايي آزاد کم بوده و براي افزايش نرخ انتقال حرارت از جابجايي واداشته استفاده مي شود .
انتقال حرارت توسط سيال متناسب است با دماي سيال و دماي سطح اين دماها در حقيقت دماي موضعي و يا دماي متوسط سطح و سيال است .
اين تناسب توسط ضريب ثابتي به تساوي تبديل مي گردد اين ضريب متناسب با خواص سيال و سرعت سيال بستگي دارد که اين ويژگي ها با هم در عدد رينولدز جمع مي شوند .
معادله آهنگ آن به صورت زير است :
كه در آن ، شار گرماي جابجايي ( W/m2 ) ، با اختلاف دماي Ts سطح و دماي سيال متناسب است . رابطه بالا را قانون سرمايش نيوتن و ثابت تناسب h ( بر حسب W/m2.k ) را ضريب انتقال گرماي جابجايي مي گويند .
تابش ( Radiation )
هر جسم در هر دمايي از خود تابش مي کند و مقداري انرژي را نيز از محيط اطراف جذب مي کند برايند اين جذب و دفع برابر است مقدار انرژي که از سطح خارج و يا به آن وارد مي شود .
اين نوع انتقال گرما نيز متناسب است با توان چهارم دماي سطح و دماي جسم اين تناسب نيز توسط ضريبي به تساوي تبديل مي شود اين ضريب ضريب جذب ناميده مي شود و تابعي از هندسه سطح و نوع و جنس آن است .
شار گرمايي توسط تابش را مي توان با رابطه زير يافت .
با ضرب اين مقدار در مساحت سطح مود نظر مي توان مقدار خالص گرماي مباذله شده را يافت
قانون فوريه :
در تحليل رسانش در يک بعد معروفترين و کاربردي ترين رابطه و قانون قانون فوريه است اختلاف درجه حرارت باعث انتقال حرارت مي شود که مقدار آن را با رابطه فوريه بدست مي آوريم .
آزمايش تحليل رسانايي يک بعدي :
در تحليل رسانش يک بعدي فرض بر اين است که گرما فقط در يک جهت و در جهت فقط يک محور منتقل
مي گردد و از انتقال گرما در ساير راستاها صرف نظر مي شود .
در اين آزمايش با داشتن منبع حرارتي و با استفاده از ترموکوپلهايي که در فواصل معيني از هم قرار گرفته اند
مي توان مسئله رسانش در يک بعد را مورد بررسي قرار داد .
شرح ساختمان دستگاه:
سيستم گرمايش :
براي شبيه سازي منبع گرمايي مي بايست يک مقدار مشخص انرژي به جسم داده شود که اين مقدار را با الکتريسيته تامين مي کنيم. وQ=V.I است.که در هر مرحله ولتاژ و جريان را تغيير مي دهيم و در واقع Q را تغيير داده ايم. در هر مرحله مي توان با استفاده از دستگاه مقدار ولتاژ و جريان متناظر آن را يافت و با ضرب اين دو در هم مقدار گرما را يافت .
سيستم خنک کننده :
از آب شهر براي خنک کردن استفاده مي شود که با يک لوله به سيستم وارد مي شود وپس از خنک کاري سيستم دوباره برمي گردد.
سيستم عايق بندي:
براي جلوگيري از انتقال حرارت جابجاي و تابشي سيستم را در يک پوشش پلاستيکي ضخيم قرار داده ايم که مانع از برخورد هوا به آن مي شود.
وسايل موجود روي دستگاه:
توليد انرژي حرارتي: اين کار توسط يک المنت حرارتي انجام مي شود در حقيقت کار اين المنت تبديا الکتريسته به گرما مي باشد و مقدار گرماي توليد شده نيز متناظر با حاصل ضرب ولتاژ در جريان است.
دماسنج : اين دستگاه شامل تعدادي سنسور است که در قسمت هاي مختلف نصب شده است و دما را در روي صفحه دستگاه نمايش مي دهند.
تئوري اساسي:
در واقع در اين آزمايش ما مي خواهيم مقدار k را در حالتهاي محوري و شعاعي بدست آوريم. براي اين کار ابتدا يک مقدار انرژي به يک ميله رسانا مي دهيم و سپس دما را در قسمت هاي مختلف آن اندازه مي گيريم و با استفاده از رابطه فوريه مقدار k را بدست مي آوريم: مهمترين کار در اين آزمايش يافتن شيب خط تغييرات دما بر حسب تغييرات فاصله است که براي ولتاژهاي مختلف مقادير يکسان به دست مي آيد و از طرفي با داشتن شار گرمايي که همان حاصل ضرب ولتاژ در جريان است مي توان مقدار ثابت را در دو حالت محوري و شعاعي يافت .
با توجه به قانون فوريه مي توان براي سيستم محوري نمودار فاصله بر حسب دما را رسم کرد و براي سيستم شعاعي نيز بنا به روابط زير مي توان از لگاريتم طبيعي استفاده کرد .
نحوه انجام آزمايش :
آزمايش را با ولتاژ اوليه 40v و 80v براي هردو سيستم شعاعي و محوري انجام داده و نتايج را در جدول زير آورده و سپس نمودار دما بر حسب فاصله براي سيستم محوري و دما بر حسب لگاريتم طبيعي فاصله را براي سيستم شعاعي رسم مي کنيم و از آن مقدار ضريب ثابت را مي يابيم .
اين دو نمودار بايد خطي بوده و شيب براي مقادير مختلف ولتاژ بايد برابر باشند يعني براي سيستم محوري نمودارهاي يافته شده بايد موازي باشند و همچنين براي سيستم شعاعي .
براي تحليل سيستم انتقال حرارت يک بعدي سيستم را به گونه نشان داده در نظر مي گيريم.
همانطور که مي بينيم T بر حسب X تقريبا خطي است و دما بر حسب Ln(r) نيز تقريباً خطي است .
بيشترين تغييرات دمايي بين دو ترمومتر شماره 3 و 4 است چون در اين قسمت دو تکه فلز به هم وصل شده و هوا مانند عايقي عمل مي کند و سبب تغييرات دمايي و خارج شدن از حالت خطي مي گردد
شيب خط در اولي تقريباً برابر است با 195 و در شعاعي برابر است با 5.675 با داشتن مقدار Q داريم که
0.0656= 195/12.8 و براي شعاعي نيز برابر است با 2.2555 = 5.675/12.8
با داشتن مقدار طول مي توان مقدار K دردر سيستم شعاعی محاسبه کرد .
منابع خطا :
ولتاژ دستگاه ثابت نمي شد.
دماي دماسنجها ثابت نمي شد و دامنه نوسان آنها خيلي زياد بود.
دو تکه فلز به خوبي به هم متصل نمي شدند و يک مقاومت سطحي بين آنها وجود داشت که باعث خطا مي شد اين خطا بيشتر در نواحي که دو فلز به متصل مي شدند نمود داشت .
منابع و ماخذ :
1-مقدمه اي بر انتقال گرما ، نويسنده فرانک-پ.اين کروپرا و ديويد-پ. دويت ،ويرايش چهارم
2- دستور کار آزمايشگاه انتقال حرارت
Sara12
11-30-2010, 10:15 PM
آزمایش2:
اندازهگیری سطحی مایعات روش ازمایش:اگر تیغه را از کنار بشر بیندازیم ته بشر میرود ولی اگر از بالا پرتاب بکنیم ته ان میرود.
کشش سطحی مولکولهای روی اب نسبت به ته ان یکسان نیستند.
مولکولهای اب تمایل دارندکه فقط مولکولهای همانند خود را جذب بکنند
ولی با مواد دیگر مثل گاز و هوامولکولها نمیتوانند به هم وصل شوند.
Sara12
11-30-2010, 10:16 PM
روش ازمایش:
دقیقا در بشرمحتوی 250گرم اب
دماسنجی قرار میدهیم و دما را در هر مرحله یادداشت میکنیم. در هرمرحله 250گرم از مواد داخل جدول به ان اضافه میکنیم وافزایش دمای جدید را یادداشت میکنیم
1مولار محلول:1مول بر{1/4}بر{1000/4} مول بر{250 /0}گرم حلال
ماده
مول بر میلی گرم
مول250/0
Kno3
101
25.25
CH3COONA
82
20.5
سود جامد
40
4.15
KI
166
41.5
C12H22O11
270گرم مول
67.5
در هر بار ازمایش مثلا در مورد ازمایش KIحدود 15/4 گرم از یدید پتاسیم را وزن کرده ودر داخل 250 گرم بشر میریزیم وتوسط یک دماسنج دمای اولییه ان را اندازه میگیریم که 30میباشد
و د مای اولییه بقیه راهم به این صورت اندازه میگیرم.
Sara12
11-30-2010, 10:17 PM
تهیه صابون
عمل هیدرولیز چربی یا روغن را اصطلاحا صابونی کردن مینامند. برای این کار، چربی (a) را با محلول سود حرارت میدهند. در نتیجه گلیسرین (b) و مخلوطی از نمک سدیم اسیدهای چرب (c) مطابق واکنش زیر حاصل میشود:
http://minaeifar.persiangig.com/12/image001.gif
چربیها و روغنهای طبیعی استر اسیدهای آلیفاتیک یک ظرفیتی با تعداد اتمهای کربن زوج و گلیسرین میباشند که آنها را گلیسرید نیز مینامند. چربیها و روغنها به طور کلی دارای ساختمان (a) میباشند. چربیها جامد و روغنها مایع میباشند. نقطه ذوب چربیها بالاتر از نقطه ذوب روغنها است. این اختلاف بستگی به نوع و مقدار اسید مربوطه دارد. هرچه مقدار اسیدهای اشباع نشده در ساختمان یک چربی بیشتر باشد، نقطه ذوب پایین تری دارد. اگر چربی تنها از اسیدهای اشباع شده تشکیل شده باشد مانند پیه گوسفند و غیره نقطه ذوب بالا خواهد داشت.
روغنهای نباتی مانند روغن زیتون، خرما، نارگیل و کرچک علاوه بر این که دارای اسیدهای چرب (اولئیک، استئاریک و پالمیتیک) هستند، اسیدهای اشباع نشده با چند پیوند دوگانه مانند اسید لینولئیک به فرمول زیر نیز در ساختمان آنها شرکت میکنند.
http://minaeifar.persiangig.com/12/image002.gif
مکانیزم عمل هیدرولیز استر را در محیط بازی میتوان به صورت زیر نوشت:
http://minaeifar.persiangig.com/12/image003.gif
ابتدا یون هیدروکسید به عنوان نوکلئوفیل (هسته دوست) به کربن گروه کربنیل حمله کرده، پس از خارج شدن یک مولکول الکل، انیون اسید به صورت هیبرید رزونانس فوق، پایدار میگردد.
بخش عملی
تهیه صابون
50 گرم چربی را در یک بشر 250 میلی لیتری ریخته و به طور ملایم آنرا حرارت دهید تا ذوب شود (دما نباید از 70 درجه بالاتر برود).
در حالیکه چربی را حرارت میدهید ضمن به همزدن مداوم محلول سود (7گرم در 50 میلی لیتر آب) را در قسمتهای 5 میلی لیتر به چربی اضافه کنید. پس از افزودن اولین 5 میلی لیتر سود، زمان اضافه نمودن 5 میلی لیتر بعدی وقتی است که سود اضافه شده قبلی تقریبا مصرف شده باشد. (برای اطمینان از مصرف سود نوک اسپاتول را در بشر فرو برده و یک قطره معرف فنل فتالئین روی آن بچکانید، چنانچه رنگ آن فورا ارغوانی شد دلیل آن است که هنوز سود در محیط وجود دارد و باید به هم زدن را ادامه داد).
پس از افزودن آخرین قسمت سود، آنقدر به هم بزنید تا صابون یک حالت کشدار به خود بگیرد (بوی صابون در این حالت به خوبی استشمام میشود.) صابون حاصل را در قالب ریخته و بگذارید یک هفته بماند تا عمل صابونی شدن کامل شود. صابون حاصل دارای مقدار زیادی گلیسیرین است، چنانچه بخواهند گلیسیرین آنرا جدا کنند، قبل از ریختن در قالب، صابون را به مدت 24 ساعت در محلول اشباع شده نمک طعام قرار میدهند، سپس قرص صابون را از درون ظرف خارج کرده و پس از شستن به قطعات کوچک تقسیم نموده، در هوا خشک میکنند.
روش دیگر تهیه صابون
در یک بالن، cc50 روغن مایع را با cc40 اتانول و gr3 پتاسیم هیدروکسید ریخته و بمدت نیم ساعت رفلاکس کنید. پس از اتمام این مدت چند قطره از مخلوط را در مقدار کمی آب حل کنید که اگر قطره روغنی روی آب قرار نگرفت واکنش پایان یافته و اگر روغن در سطح آب مشاهده شد عمل رفلاکس را به مدت 15 دقیقه دیگر ادامه دهید. سپس الکل موجود در مخلوط را به وسیله تقطیر ساده جدا کنید و ماده باقیمانده در بالن را در cc 75 آب مقطر گرم حل کنید. دقت کنید که حتما الکل موجود در بالن از مخلوط خارج شود سپس آزمایش زیر را انجام دهید.
الف) مقدار 25 میلی لیتر محلول به دست آمده را به 25 میلی لیتر آب نمک اشباع به آهستگی اضافه کنید مخلوط را صاف کرده و ماده جامد که صابون میباشد روی کاغذ صافی میماند. آنرا با آب نمک اشباع بشوئید و صابون را در روی یک ظرف شیشه ای پهن کنید.
ب) مقدار 10 میلی لیتر آب شهر را با 10 میلی لیتر محلول صابون مخلوط کرده تکان دهید و نتیجه را گزارش کنید.
Sara12
11-30-2010, 10:19 PM
تهيه پليمر خطي فنل فرمالدئيد و تبدبل آن به پليمر 3 بعدي در محيط اسيدي و بازي تهيه رزول
در لوله آزمايش يك گرم فنل را در 2ml محلول آبي فرمالين حل كنيد و به اين مخلوط تقريبآ 2ml محلول آبي رقيق آمونياك 2M اضافه نماييد . سپس چند دانه سنگ جوش را درون لوله بيندازيد . لوله را به پايه تقطير متصل نمائيد، سپس لوله را با استفاده از يك چراغ بونزن به آرامي حرارت دهيد تا مخلوط به رنگ سفيد شيري در آيد . سپس حرارت دادن را متوقف كنيد در اين حالت بايد مخلوط صورت دو لايه اي جدا از هم در آمده باشد كه لايه زيرين به صورت ويسكوز زرد رنگ در آيد و لايهي بالايي نيز سفيد رنگ باشد. كه بيشتر آن به صورت آب است . با استفاده از يك قطره چكان يا پيپت لايه بالايي را برداريد . مايع زيرين همان رزول مي باشد كه حاوي مقادير جزيي آب است . با حرارت دادن اين مايع وسكوز در داخل لوله آزمايش و يا بر روي سطح شيشه ساعت (ترجيحآورقه آلومينيومي) رزين به رنگ زرد تيره در آمده قل ميزند و نهايتآ به صورت جامد شيشه اي و قرمز قهوهاي رنگ تبديل ميشود. ميتوان حلاليت اين رزين را قبل از حرارت دادن و بعد از آن به وسيله حلالهاي اتانول و استون و تولوئن بررسي و مقايسه كرد .
Sara12
11-30-2010, 10:19 PM
نقطه جوش دمائی است که در ان فشار بخار مایع برابر فشار بخار جو می گردد لذا برای ثبت نقاط جوش ذکر فشار خارجی را می طلبد و زمانیکه فشار ذکر نشود منظور نقطه جوش در فشار یک اتمسفر کامل می باشد که نقطه جوش نرمال نامیده میشود . بعضی از مایعات قبل از رسیدن به نقطه جوش تجزیه می شوند .
روش اندازگیری نقطه جوش به مقدار مایعی که در اختیار داریم بستگی دارد اگر مقدار زیاد باشد از روش تقطیر و اگر کم باشد از روش میکرو استفاده میشود .
روش میکرو
انتهای لوله موئین را به کمک شعله مسدود کنید و به طول یک سانتیمتر بشکنید و از طرف دهانه باز ان را دریک لوله ازمایش خشک و تمیز از جنس شیشه نازک به قطر 7 – 5 میلی متر وارد کنید.
داخل لوله ازمایش مایعی را که میخواهید نقطه جوش بگیرید انقدر بریزید که لوله موئین را بپوشاند .
لوله ازمایش را با کمک سیم یا لاستیک به ترمومتر متصل کنید به طوری که مخزن ترمومتر در کنار مایع داخل لوله ازمایش باشد.
ترمومتر را به کمک گیره و پایه طوری متصل نمایید که مخزن ترمومتر و مایع داخل لوله ازمایش داخل حمام قرار گیرد.
سپس حمام را به ارامی و با شعله متوسط گرم نمایید تا حباب های پیوسته از لوله موئین خارج شود در این هنگام حرارت را قطع نمایید تا حمام سرد شود .
خروج حباب از لوله موئین به تدریج کم خواهد شد تا زمانی که دیگر حبابی خارج نمی شود و مایع وارد لوله موئین میشود و داخل لوله موئین بالا میرود .
زمانی که حباب ها قطع میشود فورا دمای ترمومتر را خوانده که دمای جوش مایع می باشد .
برای کاهش خطا در ازمایش فوق میتوان پس از خواندن دمای جوش مایع حمام را مجددا گرم نمود تا حباب های پیوسته از لوله موئین خارج شود و سپس حرارت را قطع کرده و هنگامی که خروج حباب ها پایان یافت دمای جوش را مجدد خواند.
Sara12
11-30-2010, 10:22 PM
ماشین هایی که جذب کننده قدرت مکانیکی هستند و این قدرت را به صورت های مختلفی از قبیل انرژی حرارتی،انرژی جنبشی و یا پتانسیل به سیال اعمال می کنند طیف وسیعی را شامل می شوند از قبیل : فن ها، دمنده ها و کمپرسور ها .
یکی از موارد استفاده از کمپرسور ها، جهت افزایش فشار گازها تا یک حد معین برای کاربرد های صنعتی می باشد.
تقسیم بندی کلی کمپرسور ها :
از عمده معیار های تقسیم بندی کمپرسور ها، می توان به تقسیم بندی بر اساس مکانیزم و اصول کارکرد و نحوه اعمال انرژی به سیال، اشاره داشت که بر این اساس تقسیم بندی های زیر را برای کمپرسور ها خواهیم داشت :
1) کمپرسور های رفت و برگشتی یا جابجایی مثبت یا جریان منقطع
2) کمپرسور های سانتریفیوژ یا دینامیک یا جریان پیوسته
تفاوت های مهم این دو گروه فوق را می توان در موارد زیر خلاصه کرد :
1) کمپرسور های رفت و برگشتی برای فشارهای زیاد و متوسط و شدت جریان های پایین به کار می رود در حالیکه کمپرسور های سانتریفیوژ برای فشارهای متوسط و پایین یا جریان های متوسط و بالا به کار می رود.
2) فشارهای ایجاد شده در کمپرسور های سانتریفیوژ مقدار محدود و مثبتی دارد در حالیکه، در کمپرسور های رفت و برگشتی این فشارها می تواند متغیر و قابل تنظیم بوده و اصولا تابع نیاز سیستم می باشد.
3) همان طوری که از نام گذاری این دو گروه ملاحظه می شود جریان در کمپرسور های رفت و برگشتی ناپیوسته بوده، به گونه ای که مقداری گاز به درون کمپرسور کشیده شده و عمل تراکم روی آن انجام می شود، سپس تخلیه شده و دوباره سیکل تکرار می گردد. ولی در کمپرسور های سانتریفیوژ سیکلی وجود نداشته و جریان پیوسته و ممتد می باشد.
4) کمپرسور های دینامیکی (سانتریفیوژ) بر اساس نیروی گریز از مرکز که روی قطعه ای به نام پره اعمال می کند، ایجاد انرژی می نماید و این انرژی که از نوع انرژی جنبشی می باشد در خروجی کمپرسور، به فشار مبدل می شود در حالیکه کمپرسور های رفت و برگشتی مستقیما فشار گاز را توام با کاهش حجم، افزایش می دهند.
کاربرد کمپرسور ها :
بطور کلی کمپرسور ها جهت افزایش فشار سیالات قابل تراکم (گاز و بخار) تا یک حد معین، مورد استفاده قرار میگیرد.این فشار ممکن است نیازهای مختلفی را تأمین کند از قبیل: غلبه بر اصطکاک و تلفات مسیر، تاثیر در یک واکنش معین در نقطه تحویل گاز و بهبود خواص ترمودینامیکی گاز .به بیان ساده تر، کمپرسور ها کاری مشابه پمپ ها دارند با این تفاوت که سیال آنها بخار یا گاز می باشد. گازهای جابجا شده بوسیله کمپرسور از نقطه نظر وزن ملکولی و دیگر خواص شیمیایی و فیزیکی دامنه وسیعی را تشکیل میدهند ولی امروزه از سبک ترین تا سنگین ترین گازها توسط کمپرسور های گوناگون جابجا می شوند صنایع و زمینه های متعددی وجود دارند که در هر کدام از آنها نیازهای بخصوصی با انتخاب کمپرسور های مناسب تأمین میگردد که این زمینه ها عبارتند از:
1) تهویه ساختمان، تونل ها، معادن و کوره ها
2) تأمین هوای فشرده جهت احتراق در ماشینهای احتراق داخلی و دیگ های بخار
3) انتقال انواع گازها
4) تأمین فشار مخازن ذخیره تحت فشار
5) تزریق گاز به میدان های نفتی
6) سیستم های تبرید
7) فرآیند های شیمیایی و تصفیه گازها
« کمپرسور های دینامیک (Dynamic Compressors)»
که شامل انواع زیر می شود :
1) کمپرسور های گریز از مرکز (Centrifugal Compressors)
2) کمپرسور های محوری (Axial Compressors)
3) کمپرسور های جریان مختلط (Diagonal Or Mixed Flow Compressors)
« کمپرسور های جا به جایی مثبت (Positive Displacement Compressors)»
این کمپرسور ها شامل انواع زیر می شود :
1) کمپرسور های رفت و برگشتی (Reciprocating Compressors)
2) کمپرسور های دوار یا گردشی (Rotary Compressors)
اکنون به تعریف برخی از این کمپرسور ها می پردازیم :
« کمپرسور های گریز از مرکز (Centrifugal Compressors)»
هر جا که ظرفیت و قدرت بالا مد نظر باشد بدون شک کمپرسور های سانتریفیوژ حرف اول را می زنند. از نظر تعداد مورد استفاده در صنعت نیز این ماشین ها با نوع رفت و برگشتی در مقام دوم هستند. راندمان آن ها در مقایسه با کمپرسور های رفت و برگشتی پایین بوده و لذا منبع انرژی را طلب می کنند. اصول کار در این کمپرسور ها بدین شکل است که افزایش فشار با شتاب گیری جریان گاز، در حرکت شعاعی در طول پره ها و تبدیل انرژی سرعت گاز به انرژی فشاری در عبور از دیفیوزر صورت می گیرد. این کمپرسور ها شامل قسمت های زیر هستند : 1) پوسته (Shell) ، 2) دیافراگم ها و دیفیوزر ها ، 3) آب بندی شانه ای ( Labyrinths) ، 4) پره ها (Impellers)
http://upload.wikimedia.org/wikipedia/commons/f/f5/CentrifugalCompressor.jpg
« کمپرسور های جریان مختلط (Diagonal Or Mixed Flow Compressors)»
کمپرسور های جریان مختلط یا قطری یا جریان محوری و شعاعی، مشابه کمپرسور های گریز از مرکز هستند. یعنی سیال موازی محور وارد چرخ می گردد و به طور مایل نسبت به محور از چرخ خارج می شود. در این کمپرسور ها دیفیوزر اغلب برای تبدیل جریان قطری به جریان محوری به کار می رود. کمپرسور های جریان مختلط دارای قطر دیفیوزر کمتری نسبت به کمپرسور های گریز از مرکز هستند. در این نوع کمپرسور ها متوسط شعاع خروجی بیش از ورودی است. تا کنون تعداد بسیار کمی از کمپرسور های پژوهشی جریان مختلط در سراسر جهان تست شده اند.
این کمپرسور ها در ایالات متحده به کمپرسور های قطری(Diagonal Compressors) معروفند.
« کمپرسور های رفت و برگشتی (Reciprocating Compressors)»
کمپرسور های رفت و برگشتی قدیمی ترین و رایج ترین نوع کمپرسور ها بوده و عمل تراکم گازها با کاهش اجباری حجم توسط حرکت پیستون در داخل یک سیلندر صورت می گیرد.ورود گاز به سیلندر و خروج از آن به وسیله سوپاپ ها بر اساس اختلاف فشار ما بین خط لوله و درون سیلندر، باز و بسته می شوند.
مشخصه بارز کمپرسور های رفت و برگشتی، امکان استفاده از آنها برای چندین سرویس در یک دستگاه واحد می باشد. مثلا از یک سیلندر برای کمپرس کردن پروپان و از سیلندرهای دیگر برای کمپرس گازهای دیگر می توان استفاده کرد.
Sara12
11-30-2010, 10:24 PM
روشهای مختلفی برای جداسازی مواد اجزای سازنده یک محلول وجود دارد که یکی از این روشها فرایند تقطیر میباشد در روش تقطیر جداکردن اجزاء یک مخلوط ، از روی اختلاف نقطه جوش آنها انجام میگیرد .تقطیر ، در واقع ، جداسازی فیزیکی برشهای نفتی است که اساس آن ، اختلاف در نقطه جوش هیدروکربنهای مختلف است. هر چه هیدروکربن سنگینتر باشد، نقطه جوش آن زیاد است و هر چه هیدروکربن سبکتر باشد، زودتر خارج میشود.
تقطیر در عمل به دو روش زیر انجام میگیرد. روش اول شامل تولید بخار از طریق جوشاندن یک مخلوط مایع ، سپس میعان بخار ، بدون اینکه هیچ مایعی مجددا به محفظه تقطیر بازگردد. در نتیجه هیچ مایع برگشتی وجود ندارد. در روش دوم قسمتی از بخار مایع شده به دستگاه تقطیر باز میگردد و به صورتی که این مایع برگشتی در مجاورت بخاری که به طرف مبرد میرود قرار میگیرد. هر کدام از این روشها میتوانند پیوسته یا ناپیوسته باشند.
تقطیر، معمولترین روشی است که برای تخلیص مایعات به کار می رود. دراین عمل مایع را به کمک حرارت تبخیر می کنند و بخار مربوطه را در ظرف جداگانه ای متراکم می کنند و محصول تقطیر را بدست می آورند. چنانچه ناخالصیهای موجود در مایع اولیه فرار نباشند، در باقی مانده تقطیر به جا می مانند و تقطیر ساده جسم را خالص میکند. در صورتی که ناخالصیها فرار باشند، تقطیر جزء به جزء مورد احتیاج خواهد بود.
چنانچه ناخالصي هاي موجود در مايع اوليه فرار نباشد در باقيمانده تقطير به جا مي ماند و تقطير ساده نمونه را خالص مي كند. در صورتيكه فرار باشند تقطير جز به جز مورد نياز خواهد بود. اگر فقط يك ماده فرار بوده و اختلاف نقطه ي جوش اين ماده با ناخالصي هاي موجود در آن زياد باشد (حدود 30 درجه) مي توان براي جدا كردن اين ماده از ناخالصي ها از تقطير ساده استفاده نمود. از تقطير ساده معمولا در جداسازي مخلوط مايعاتي استفاده مي شود كه نقطه ي جوشي در محدوده 40 تا 150 درجه دارند زيرا در دماي بالاتر از 150 درجه بسياري از تركيبات آلي تجزيه مي شوند ودر دماي جوش كمتر از 40 درجه مقدار زيادي از مايع در ضمن تقطيرهدر مي رود.
در تقطير مخلوطي ازدو يا چند جسم فشاربخار كل تابعي از فشار بخار هر يك از اجزا و كسر مولي آنه مي باشد. بر اساس قانون رائول فشار بخار جزيي يك تركيب فرار در يك محلول ايده آل با حاصلضرب فشار بخار در كسر مولي آن برابر است. بنابراين در بخار موجود بر سطح دو يا چند جز محلول فرار ذرات كليه اجزا شركت كننده در محلول يافت مي شود. رابطه بين فشار بخار كل (Pt) با فشار جزيي (Pi) و كسر مولي اجزا (Xi) به صورت زير است:
...+Pt = PaXa + PbXb + PcXc
اگر در محلولي شامل دو ماده شيميايي فرار يك جز داراي فشار بخار بيشتري از جز ديگر باشد بخار حاصل از آن در مقايسه با مايع داراي درصد بيشتري از جسم فرارتر خواهد بود.
ظروف معمولي در خلل و شكاف هاي جدار خود داراي بسته ها ي هواي محبوس مي باشند. با ريختن مايع در ظرف محفظه بسته ها از بخار پر مي شود. وقتي كه دماي مايع افزايش مي يابد بخار آنقدر به حالت متراكم باقي مي ماند تا اينكه از فشار بخار روي مايع بيشتر شود در اين حالت بخار به دام افتاده افزايش حجم پيدا مي كند و به صورت حباب هايي به سطح مايع رسيده و خارج مي گردد. حالت به هم خوردگي حاصل از حباب ها (جوش) حباب هاي هواي بيشتري را به داخل مايع كشانده و فرايند با تشكيل بخار ادامه مي يابد.
با حرارت دادن مايعات درظروف شيشه اي كه داراي سطوحي نسبتا صاف و يكنواخت مي باشند حالت جوش ايجاد نمي شود و اگر درجه حرارت به اندازه كافي افزايش يابد به حالت انفجاري تبخير مي گردند. براي اجتناب از خطرات مربوط به جوشش ناگهاني (به صورت ضربه اي) منبعي براي دميدن حباب ها به درون مايع قبل از حرارت دادن و عمل جوش لازم است. در شرايط معمولي (فشارجو) اين منبع سنگ جوش مي باشد. سنگ جوش دانه هايي حاوي خلل ريز در خود بوده كه در آن مولكولهاي هوا حبس شده اند. با قرار گرفتن اين دانه ها در محلول حباب ها از سطح آنها تشكيل شده و از جوشيدن انفجاري و تاخير در جوش جلوگيري مي نمايد.
http://cwx.prenhall.com/bookbind/pubbooks/hillchem3/medialib/media_portfolio/text_images/CH12/FG12_15.JPG
انواع تقطیر :
تقطير ساده:
به عنوان مثال هنگاميكه ناخالصي غير فراري مانند شكر به مايع خالصي اضافه مي شود فشار بخار مايع تنزل مي يابد. علت اين عمل آن است كه وجود جز غير فرار به مقدار زيادي غلظت جز اصلي فرار را پايين مي آورد يعني ديگر تمام مولكولهايي كه در سطح مايع موجودند مولكولهاي جسم فرار نيستند و بدين ترتيب قابليت تبخير مايع كم مي شود.
تقطير ساده را مي توان به دوصورت تعريف كرد :
تقطير ساده غير مداوم
تقطير ساده مداوم
تقطیر ساده غیر مداوم :
در این روش تقطیر ، مخلوط حرارت داده میشود تا بحال جوش درآید بخارهایی که تشکیل میشود غنی از جزء سبک مخلوط میباشد پس از عبور از کندانسورها ( میعان کننده ها ) تبدیل به مایع شده ، از سیستم تقطیر خارج میگردد. به تدریج که غلظت جزء سنگین مخلوط در مایع باقی مانده زیاد میشود، نقطه جوش آن بتدریج بالا میرود. به این ترتیب ، هر لحظه از عمل تقطیر ، ترکیب فاز بخار حاصل و مایع باقی مانده تغییر میکند.
تقطیر ساده مداوم :
در این روش ، مخلوط اولیه (خوراک دستگاه) بطور مداوم با مقدار ثابت در واحد زمان ، در گرم کننده گرم میشود تا مقداری از آن بصورت بخار درآید، و به محض ورود در ستون تقطیر ، جزء سبک مخلوط بخار از جزء سنگین جدا می شود و از بالای ستون تقطیر خارج میگردد و بعد از عبور از کندانسورها ، به صورت مایع در میآید جزء سنگین نیز از ته ستون تقطیر خارج میشود. قابل ذکر است که همیشه جزء سبک مقداری جزء سنگین و جزء سنگین نیز دارای مقداری از جزء سبک است.
در تقطير يك ماده خالص چنانچه مايع زياده از حد گرم نشود درجه حرارتي كه در گرماسنج ديده مي شود يعني درجه حرارت دهانه ي خروجي با درجه حرارت مايع جوشان در ظرف تقطير يعني درجه حرارت ظرف يكسان است. درجه حرارت دهانه خروجي كه به اين ترتيب به نقطه جوش مايع مربوط مي شود در طول تقطير ثابت مي ماند.
هرگاه در مايعي که تقطير مي شود ناخالصي غير فراري موجود باشد درجه حرارت دهانه خروجي همان درجه حرارت مايع خالص است زيرا ماده اي كه بر روي حباب گرماسنج متراكم مي شود به ناخالصي آلوده نيست. ولي درجه حرارت ظرف به علت كاهش فشار بخار محلول بالا مي ررود. در جريان تقطير درجه حرارت ظرف نيز افزايش مي يابد.زيرا كه غلظت ناخالصي با تقطير جز فرار به تدريج زياد مي شود و فشار بخار مايع بيشتر پايين مي ايد ، با وجود اين درجه حرارت دهانه خروجي مانند مايع خالص ثابت مي ماند. رابطه كمي موجود بين فشار بخار وتركيب مخلوط همگن مايع (محلول) به قانون رائول معروف است.
تقطیر تبخیر آنی (ناگهانی):
وقتی محلول چند جزئی مانند نفت خام را حرارت میدهیم ، اجزای تشکیل دهنده آن بترتیب که سبکتر هستند، زودتر بخار میشود. برعکس وقتی بخواهیم این بخارها را سرد و دوباره تبدیل به مایع کنیم، هر کدام که سبکتر باشد دیرتر مایع میگردد. با توجه به این خاصیت ، میتوانیم نفت خام را به روش دیگری که به آن "تقطیر آنی" گویند، تقطیر نماییم. در این روش ، نفت خام را چنان حرارت میدهیم که ناگهان همه اجزای آن تبدیل به بخار گردد و سپس آنها را سرد میکنیم تا مایع شود. در اینجا ، بخارها به ترتیب سنگینی ، مایع میشوند یعنی هرچه سنگینتر باشند، زودتر مایع میگردند و بدین گونه ، اجزای نفت خام را با ترتیب مایع شدن از هم جدا میکنیم.
تقطیر در خلا :
با توجه به اینکه نقطه جوش مواد سنگین نفتی نسبتا بالاست و نیاز به دما و انرژی بیشتری دارد، و از طرف دیگر ، مقاومت این مواد در مقابل حرارت بالا کمتر میباشد و زودتر تجزیه میگردند، لذا برای جداکردن آنها از خلا نسبی استفاده میشود. در این صورت مواد دمای پایینتر از نقطه جوش معمولی خود به جوش میآیند. در نتیجه ، تقطیر در خلا ، دو فایده دارد: اول این که به انرژی و دمای کمتر نیاز است، دوم اینکه مولکولها تجزیه نمیشوند. امروزه در بیشتر موارد در عمل تقطیر ، از خلا استفاده میشود. یعنی این که: هم تقطیر جزء به جزء و هم تقطیر آنی را در خلا انجام میدهند.
تقطیر به کمک بخار آب :
یکی دیگر از طرق تقطیر آن است که بخار آب را در دستگاه تقطیر وارد میکنند در این صورت بی آنکه خلاءای ایجاد گردد، اجزای نفت خام در درجه حرارت کمتری تبخیر میشوند. این مورد معمولا در زمانی انجام میشود که در نقطه جوش آب ، فشار بخار اجزای جدا شونده بالا باشد تا به همراه بخار آب از مخلوط جدا گردند.
غالبابه كمك تقطير با بخار آب مي توان تركيبات آلي فراري را كه با آب مخلوط نمي شوند يا تقريبا با آن غير قابل اختلاط هستند تفكيك و تخليص كرد. در اين روش مخلوط آب وجسم آلي با هم تقطير مي شوند.عمل تقطير يك مخلوط غير قابل امتزاج در صورتي كه يكي از اجزا آب باشد تقطير با بخار آب ناميده مي شود.
تقطیر آزئوتروپی :
از این روش تقطیر معمولا در مواردی که نقطه جوش اجزاء مخلوط بهم نزدیک باشند استفاده میشود، جداسازی مخلوط اولیه ، با افزایش یک حلال خاص که با یکی از اجزای کلیدی ، آزئوتوپ تشکیل میدهد امکانپذیر است. آزئوتروپ محصول تقطیر یا ته مانده را از ستون تشکیل میدهد و بعد حلال و جزء کلیدی را از هم جدا میکند. اغلب ، ماده افزوده شده آزئوتروپی با نقطه جوش پایین تشکیل میدهد که به آن شکننده آزئوتروپ میگویند. آزئوتروپ اغلب شامل اجزای خوراک است، اما نسبت اجزای کلیدی به سایر اجزای خوراک خیلی متفاوت بوده و بیشتر است.
مثالی از تقطیر آزئوتروپی استفاده از بنزن برای جداسازی کامل اتانول از آب است، که آزئوتروپی با نقطه جوش پایین با 6/95% وزنی الکل را تشکیل میدهد. مخلوط آب- الکل با 95% وزنی الکل به ستون تقطیر آزئوتروپی افزوده میشود و جریان جریان غنی از بنزن از قسمت فوقانی وارد میشود. محصول ته مانده الکل تقریبا خالص است وبخار بالایی یک آزئوتروپی سهگانه است. این بخار مایع شده، به دو فاز تقسیم میشود. لایه آلی برگشت داده شده، لایه آلی به ستون بازیافت بنزن فرستاده میشود. همه بنزن و مقدار الکل در بخار بالایی گرفته شده، به ستون اول روانه میشوند. جریان انتهایی در ستون سوم تقطیر میشود تا آب خالص و مقداری آزئوتروپ دوگانه از آن بدست آید.
تقطیر استخراجی :
جداسازی اجزای با نقطه جوش تقریبا یکسان از طریق تقطیر ساده مشکل است حتی اگر مخلوط ایده آل باشد و به دلیل تشکیل آزئوتروپ ، جداسازی کامل آنها غیر ممکن است برای چنین سیستم هایی با افزایش یک جزء سوم به مخلوط که باعث تغییر فراریت نسبی ترکیبات اولیه میشود، جداسازی ممکن میشود. جزء افزوده شده باید مایعی با نقطه جوش بالا باشد، قابلیت حل شدن در هر دو جزء کلیدی را داشته باشد و از لحاظ شیمیایی به یکی از آنها شبیه باشد. جزء کلیدی که به حلال بیشتر شبیه است ضریب فعالیت پایین تری از جزء دیگر محلول دارد، در نتیجه جداسازی بهبود می یابد این فرآیند ، تقطیر استخراجی نام دارد.
مثالی از تقطیر استخراجی، استفاده از فور فورال در جداسازی بوتادیان و بوتن است، فورفورال که حلالی به شدت قطبی است، فعالیت بوتادی ان را بیش تر از بوتن و بوتان کم میکند و غلظت بوتادی ان وفورفورال وارد قسمت فوقانی ستون تقطیر استخراجی شود، با انجام تقطیر بوتادی ان از فورفورال جدا میشود.
تقطیر جزء به جزء :
اجزای سازنده محلول شامل دو یا چند فرار را که از قانون رائول پیروی میکنند، میتوان با فرایند تقطیر جزء به جزء از هم جدا کرد. طبق قانون رائول ، فشار بخار محلول برابر با مجموع اجزای سازنده آن است و سهم هر جزء برابر با حاصلضرب کسر مولی آن جزء به جزء در فشار بخار آن در حالت خاص است. در تقطیر محلولی از B و A ، غلظت A در بخاری که خارج شده و مایع میشود، بیش از غلظت آن در مایع باقی مانده است. با ادامه عمل تقطیر ، ترکیب درصد اجزا در بخار و مایع دائما تغییر میکند و این در هر نقطه عمومیت دارد. با جمع آوری مایعی که از سردشدن بخار حاصل میشود و از تقطیر مجدد آن و با تکراری پی در پی این عمل ، سرانجام میتوان اجزای سازنده مخلوط اصلی را به صورتی واقعا خالص بدست آورد.
از نظر سهولت در اينجا فقط محلولهاي ايده آل دو تايي را كه محتوي دو جز فرار RوS باشند در نظر مي گيريم. محلول ايده ال به محلولي اطلاق مي شود كه در آن اثرات بين مولكولهاي متجانس مشابه با اثرات بين مولكولهاي غير متجانس باشد.گرچه فقط محلولهاي ايده ال به طور كامل از قانون رائول پيروي مي كنند ولي بسياري از محلولهاي آلي به محلولهلي ايده آل نزديك هستند.
تقطير جزبه جز محلول هاي غير ايده ال
گرچه بيشتر مخلوط هاي يكنواخت مايع به صورت محلولهاي ايده ال عمل مي كنند ولي نمونه هاي بسياري وجود دارد كه نحوه عمل آنها ايده آل نيست.در اين محلولها مولكولهاي غير متجانس در مجاورت يكديگر به طور يكسان عمل نمي كنند انحراف حاصل از قانون رائول به دو روش انجام ميگيرد:
بعضي از محلولها فشار بخار بيشتري از فشار بخار پيش بيني شده ظاهر مي سازندوگفته مي شود كه انحراف مثبت دارند. بعضي ديگر فشار بخار كمتري از فشار پيش بيني شده آشكار مي كنندومي گويند كه انحراف منفي نشان مي دهند.
در انحراف مثبت نيروي جاذبه بين مولكولهاي مختلف دو جز سازنده ضعيف تر از نيروي جاذبه بين مولكولهاي مشابه يك جز است و در نتيجه در حدود تركيب درصد معيني فشار بخار مشترك دو جز بزرگتر از فشار بخار جز خالصي مي شود كه فرارتر است. بنابراين مخلوط هايي كه تركيب درصد آنها در اين حدود باشد درجه جوش كمتري از هر يك از دو جز خالص دارند.مخلوطي كه در اين حدود حداقل درجه جوشش را دارد بايد به صورت جز سوم در نظر گرفته شود.اين مخلوط نقطه جوش ثابتي دارد زيرا تركيب درصد بخاري كه در تعادل با مايع است با تركيب درصد خود مايع برابر است.چنين مخلوطي را آزئوتروپ يا مخلوط آزئوتروپ با جوشش مينيمم مي نامند. از تقطير جز به جز اين مخلوط ها هر دو جز به حالت خالص به دست نمي آيد بلكه جزيي كه تركيب درصد آن از تركيب درصد آزئوتروپ بيشتر باشد توليد مي شود.
در انحراف منفي از قانون رائول نيروي جاذبه بين مولكولهاي مختلف دو جز قويتر از نيروي جاذبه بين مولكولهاي مشابه يك جز است ودر نتيجه تركيب درصد معيني فشار بخار مشترك دو جز كمتر از فشار بخار جز خالص مي شود كه فرارتر است.بنابراين مخلوط هايي كه تركيب درصد آنها در اين حدود باشد حتي نسبت به جز خالصي كه نقطه جوش بيشتري دارد در درجه حرارت بالاتري مي جوشند.در اينجا تركيب درصد به خصوصي وجود دارد كه به آزئو تروپ با جوشش ماكسيمم مربوط مي شود. تقطير جز به جز محلولهايي كه تركيب درصدي غير از تركيب درصد آزئوتروپ دارندباعث خروج جزيي مخلوط مي شود كه تركيب درصد آن از آزئوتروپ بيشتر باشد.
ستونهاي تقطيرجز به جز:
اين ستونها انواع متعددي دارد ولي در تمام آنها خصلت هاي مشابهي وجود دارد. اين ستونها مسير عمودي را به وجود مي آورند كه بايد بخار در انتقال از ظرف تقطير به مبرد از آن بگذرد. اين مسير به مقدار قابل ملاحظه اي از مسير دستگاه تقطير ساده طويل تر است. هنگام انتقال بخار از ظرف تقطير به بالاي ستون مقداري از بخار متراكم مي شود.چنان چه قسمت پايين اين ستون نسبت به قسمت بالاي آن در درجه حرارت بيشتري نگه داري شود مايع متراكم شده و در حالي كه به پايين ستون مي ريزد دوباره به طور جزيي تبخير مي شود .بخار متراكم نشده همراه بخاري كه از تبخير مجدد مايع متراكم شدهحاصل مي شود در داخل ستون بالاتر مي رود واز يك سري تراكم وتبخير مي گذرد. اين اعمال باعث تقطير مجدد مايع مي شود و به طوريكه در هر يك از مراحل فاز بخاري كه به وجود مي آيد نسبت به جز فرارتر غني تر مي شود.ماده متراكم شده اي كه به پايين ستون مي ريزددر مقايسه با بخاري كه با آن در تماس است در هر يك از مراحل نسبت جزيي كه فراريت كمتري دارد غني تر مي شود.
در شرايط ايده ال بين فازهاي مايع و بخار در سراسر ستون تعادل برقرار مي شود و فاز بخار بالايي تقريبا به طور كامل از جز فرارتر تشكيل مي شود و فاز مايع پاييني نسبت به جزيي كه فراريت كمتري دارد غني تر مي شود.
مهم ترين شرايطي كه براي ايجاد اين حالت لازم است عبارتند از :
تماس كامل و مداوم بين فازهاي بخار و مايع در ستون
حفظ افت مناسبي از درجه حرارت در طول ستون
طول كافي ستون
اختلاف كافي در نقاط جوش اجزاي مخلوط مايع
چنانچه دو شرط اول كاملا مراعات شود مي توان با يك ستون طويل تركيباتي كه اختلاف كمي در نقطه ي جوش دارند به طور رضايت بخش از هم جدا كرد زيرا طول ستون مورد لزوم و اختلاف نقاط جوش اجزا با هم نسبت عكس دارند. معمولترين راه ايجاد تماس لازم در بين فازهاي مايع آن است كه ستون با مقداري ماده بي اثر مانند شيشه يا سراميك يا تكه هاي فلزي به اشكال مختلف كه سطح تماس وسيعي را فراهم مي كند پر شود. يكي از راه هاي بسيار موثر ايجاد اين تماس بين مايع و بخار آن است كه نوار چرخاني از فلز يا تفلون كه با سرعت زيادي در داخل ستون بچرخد به كار رود.
اين عمل نسبت به ستون هاي پر شده اي كه قدرت مشابهي دارند اين مزيت را دارد كه ماده كمي را در داخل ستون نگاه مي دارد (منظور از اين نگه داري مقدار مايع و بخاري است كه براي حفظ شرايط تعادل در داخل ستون لازم است.)
تقطیر تبخیر ناگهانی
در این نوع تقطیر ، مخلوطی از مواد نفتی که قبلا در مبدلهای حرارتی و یا کوره گرم شدهاند، بطور مداوم به ظرف تقطیر وارد میشوند و تحت شرایط ثابت ، مقداری از آنها به صورت ناگهانی تبخیر میشوند. بخارات حاصله بعد از میعان و مایع باقیمانده در پایین برج بعد از سرد شدن به صورت محصولات تقطیر جمع آوری میشوند. در این نوع تقطیر ، خلوص محصولات چندان زیاد نیست.
تقطیر با مایع برگشتی ( تقطیر همراه با تصفیه )
در این روش تقطیر ، قسمتی از بخارات حاصله در بالای برج ، بعد از میعان به صورت محصول خارج شده و قسمت زیادی به داخل برج برگردانده میشود. این مایع به مایع برگشتی موسوم است. مایع برگشتی با بخارات در حال صعود در تماس قرار داده میشود تا انتقال ماده و انتقال حرارت ، صورت گیرد. از آنجا که مایعات در داخل برج در نقطه جوش خود هستند، لذا در هر تماس مقداری از بخار، تبدیل به مایع و قسمتی از مایع نیز تبدیل به بخار میشود.
نتیجه نهایی مجوعه این تماسها ، بخاری اشباع از هیدروکربنهای با نقطه جوش کم و مایعی اشباع از مواد نفتی با نقطه جوش زیاد میباشد. در تقطیر با مایع برگشتی با استفاده از تماس بخار و مایع ، میتوان محصولات مورد نیاز را با هر درجه خلوص تولید کرد، مشروط بر اینکه به مقدار کافی مایع برگشتی و سینی در برج موجود باشد. بوسیله مایع برگشتی یا تعداد سینیهای داخل برج میتوانیم درجه خلوص را تغییر دهیم. لازم به توضیح است که ازدیاد مقدار مایع برگشتی باعث افزایش میزان سوخت خواهد شد. چون تمام مایع برگشتی باید دوباره به صورت بخار تبدیل شود.
امروزه به علت گرانی سوخت ، سعی میشود برای بدست آوردن خلوص بیشتر محصولات ، به جای ازدیاد مایع برگشتی از سینیهای بیشتری در برجهای تقطیر استفاده شود. زیاد شدن مایع برگشتی موجب زیاد شدن انرژی میشود. برای همین ، تعداد سینیها را افزایش میدهند. در ابتدا مایع برگشتی را صد درصد انتخاب کرده و بعد مرتبا این درصد را کم میکنند و به صورت محصول خارج میکنند تا به این ترتیب دستگاه تنظیم شود.
انواع مایع برگشتی
• مایع برگشتی سرد:
این نوع مایع برگشتی با درجه حرارتی کمتر از دمای بالای برج تقطیر برگردانده میشود. مقدار گرمای گرفته شده ، برابر با مجموع گرمای نهان و گرمای مخصوص مورد نیاز برای رساندن دمای مایع به دمای بالای برج است.
• مایع برگشتی گرم:
مایع برگشتی گرم با درجه حرارتی برابر با دمای بخارات خروجی برج مورد استفاده قرار میگیرد.
• مایع برگشتی داخلی:
مجموع تمام مایعهای برگشتی داخل برج را که از سینیهای بالا تا پایین در حرکت است، مایع برگشتی داخلی گویند. مایع برگشتی داخلی و گرم فقط قادر به جذب گرمای نهان میباشد. چون اصولا طبق تعریف اختلاف دمایی بین بخارات و مایعات در حال تماس وجود ندارد.
• مایع برگشت دورانی:
این نوع مایع برگشتی ، تبخیر نمیشود. بلکه فقط گرمای مخصوص معادل با اختلاف دمای حاصل از دوران خود را از برج خارج میکند. این مایع برگشتی با دمای زیاد از برج خارج شده و بعد از سرد شدن با درجه حرارتی کمتر به برج برمیگردد. معمولا این نوع مایع برگشتی درقسمتهای میانی یا درونی برج بکار گرفته میشود و مایع برگشتی جانبی هم خوانده میشود. اثر عمده این روش ، تقلیل حجم بخارات موجود در برج است.
نسبت مایع برگشتی
نسبت حجم مایع برگشتی به داخلی و محصول بالایی برج را نسبت مایع برگشتی گویند. از آنجا که محاسبه مایع برگشتی داخلی نیاز به محاسبات دقیق دارد، لذا در پالایشگاهها ، عملا نسبت مایع برگشتی بالای برج به محصول بالایی را به عنوان نسبت مایع برگشتی بکار میبرند.
تقطیر نوبتی
این نوع تقطیرها در قدیم بسیار متداول بوده، ولی امروزه بعلت نیاز نیروی انسانی و ضرورت ظرفیت زیاد ، این روش کمتر مورد توجه قرار میگیرد. امروزه تقطیر نوبتی ، صرفا در صنایع دارویی و رنگ و مواد آرایشی و موارد مشابه بکار برده میشود و در صنایع پالایش نفت در موارد محدودی مورد استفاده قرار میگیرد. بنابراین در موارد زیر ، تقطیر نوبتی از نظر اقتصادی قابل توجه میباشد.
• تقطیر در مقیاس کم
• ضرورت تغییرات زیاد در شرایط خوراک و محصولات مورد نیاز
• استفاده نامنظم از دستگاه
• تفکیک چند محصولی
• عملیات تولید متوالی با فرآیندهای مختلف
تقطیر مداوم
امروزه بعلت اقتصادی بودن مداوم در تمام عملیات پالایش نفت از این روش استفاده میشود. در تقطیر مداوم برای یک نوع خوراک مشخص و برشهای تعیین شده شرایط عملیاتی ثابت بکار گرفته میشود. بعلت ثابت بودن شرایط عملیاتی در مقایسه با تقطیر نوبتی به مراقبت و نیروی انسانی کمتری احتیاج است. با استفاده از تقطیر مداوم در پالایشگاهها مواد زیر تولید میشود:
گاز اتان و متان بعنوان سوخت پالایشگاه ، گاز پروپان و بوتان بعنوان گاز مایع و خوراک واحدهای پتروشیمی ، بنزین موتور و نفتهای سنگین بعنوان خوراک واحدهای تبدیل کاتالیستی برای تهیه بنزین با درجه آروماتیسیته بالاتر ، حلالها ، نفت سفید ، سوخت جت سبک و سنگین ، نفت گاز ، خوراک واحدهای هیدروکراکینگ و واحدهای روغن سازی ، نفت کوره و انواع آسفالتها.
● كتاب شيمي آلي تجربي نوين / جلد اول وجلد دوم / نويسندگان: رابرتس- گيلبرت-ردوالد- وينگرو / مترجم: هوشنگ پير الهي
● كتاب شيمي عملي و آلي / مولفين: آقايان جليليان- وارسته مرادي- احمدي گلسفيدي
Sara12
11-30-2010, 10:26 PM
عنوان :بویلر ها (Boilers)
هدف: شرح کلی دیگ بخار
تئوری:
نوعی از دیگ های بخارPackaged boiler و لوله آتشین Fire Tube هستند. دیگ بخار شامل سه مرحله عبور گاز (گاز گرم حاصل از اشتعال سوخت) است.
مرحله نخست از قسمت جلو کوره تا انتهای آن است (شماره 1) و طوری ساخته شده که در مقابل گرمای حاصله از احتراق و سوخت و جذب حرارت از بدنه کوره و انقباض حاصله از آن مقاومت می کند و حالت ارتجائی دارد. مرحله دوم و سوم عبور گاز شامل عبور گاز حاصل از اشتعال سوخت در دو سری لوله (شماره 2 و 3) می باشد.
اطاقک احتراق نصب شده در انتهای کوره (شماره 4) حرارت حاصله از احتراق سوخت را بصورت تشعشعی به سطح آب داخل دیگ منتقل می سازد.
لانه سیمانی نسوزی در دریچه عقبی دیگ به کار رفته است. این دریچه به اندازه کافی بزرگ و مخصوص دخول افراد به منظور بازرسی مجرای خروجی گاز یا دود (دودکش اصلی دیگ) را بر حسب شرایط محل نصب می توان در بالا و یا در پشت دیگ نصب نمود (شماره 5).
بدنه دیگ بخار با یک لایه عایق پشم شیشه مرغوب به ضخامت ٥٠ میلی متر پوشیده شده و روی آن بوسیله ورق نرم و نازک فولادی روکش کاری شده است.
اتصالات بدنه و کوره دیگ بوسیله جوشکاری انجام شده و تمامی جوش ها بوسیله اشعه x تست شده و تنش های داخلی آن آزاد گردیده است.
سوخت مایع و گاز سوخت مناسب این دیگ ها هستند و می توان از مشعل های گازسوز یا مایع سوز و یا از مشعل های مخلط دو سوخته گاز و مایع استفاده نمود.
هوارسانی دیگ:
هوارسانی دیگ بوسیله یک فن الکتریکی تأمین می شود. هوای ورودی دیگ بوسیله دمپر کنترل می گردد. هوای اولیه بوسیله فن تهیه و از طریق محفظه هوا فن اولیه سوار شده روی شافت برسد. و این فن حدود 7% هوای لازم جهت احتراق سوخت را تأمین می نماید. هوای ثانویه مستقیماً از طریق محفظه باد تغذیه می شود. تنظیم دمپر و هوای اولیه و مقدار سوخت لازم بوسیله دمپر موتور و بادامک های مربوطه با اهرمهای موجود انجام می شود.
ساختمان بدنه دیگ:
١- بدنه خارجی (شماره 1): بدنه خارجی دیگ ورقی است شکل استوانه که ضخامت نگهدارنده لوله های عقب و جلو در دو سر آن نصب شده است.
٢- کوره و اطاقک احتراق (شماره 1 و 4): کوره شکل استوانه با اتصالات جوشی طولی و عرضی ساخته شده است که حاوی انحنای مقعری شکل ارتجاعی جهت انبساط کوره می باشد. اطاقک احتراق میانی شامل ورق استوانه ای شکلی است که ازدو طرف بوسیله دو صفحه محصور شده است. کوره مابین دو صفحه نگهدارنده لوله های عقب و جلو قرار گرفته و اولین گذرگاه شعله و گاز را تشکیل می دهد. صفحه عقبی اطاقک احتراق و صفحه نگهدارنده لوله ها با میلگردهای مقاوم بوسیله جوشکاری به هم متصل شده است.
٣- لوله ها: دو سری لوله مقاوم جهت عبور گاز مرحله دوم و سوم نصب شده که در دیگ هایی که فشار کاری آنها تا 79/13 بار (200 پوند بر انیچ مربع) هستند اکسپند شده و برای فشارهای کاری بیشتر علاوه بر اکسپند کاری جوشکاری نیز شده است.
٤- تمیز کاری و کنترل دیگ: دریچه آدم رو در بالای دیگ، دریچه مخصوص تخلیه رسوبات در پشت دی، و دریچه ویژه بازدید اطاقک احتراق هر یک جهت تمیز کاری یا بازرسی و یا هر دو در قسمتهای مختلف دیگ تعبیه شده است. در جلو دیگ دو عدد درب آویزان بزرگ قرار گرفته که با باز کردن آنها می توان ضمن بازدید از لوله های ویژه عبور گاز، آنها را تمیز نمود. با باز نمودن درب های عقبی تعبیه شده در روی محفظه دود عقبی دیگ می توان صفحه نگهدارنده لوله های عقب دیگ را بازرسی کرد.
٥- نصب دستگاه های خارجی دیگ بخار: نصب قطعات اصلی و کمکی و وسائل کنترل کننده با لوله های مقاوم بوسیله جوشکاری روی بدنه انجام شده است .
وسائل و اتصالات دیگ: آب مورد نیاز دیگ بخار بوسیله پمپ تغذیه تأمین می شود. آب ورودی دیگ بخار از طریق شیر تغذیه عبور می کند. موقعیکه سطح آب به حد نرمال یعنی نزدیک به وسط آب نمای شیشه ای رسید، پمپ تغذیه بوسیله کنترل کننده دو حالته متوقف می شود. و بالعکس وقتیکه سطح آب از حد نرمال پائین تر رفت، کلید کنترل استارت پمپ را جهت جبران کمبود آب و رساندن آن به حد نرمال روشن می کند.
برای دیگ های بخار با ظرفیت ( kg/h 8150 - Ib/h 18000 ) و بالاتر به جای سیستم کنترل دو حالته کنترل تغذیه مدوله، با کلید شناوری، جعبه کنترل، توام با یک عدد شیر کنترل تغذیه مدوله به کار می برند. پمپ تغذیه دائماً روشن می ماند ولی شیر کنترل مدوله تغذیه به اندازه آب مورد نیاز دیگ کم و یا زیاد می شود و کمبود سطح آب را جبران می نماید.
فشار بخار داخل دیگ بوسیله مانومتر (سی تیرپ) نشان داده می شود. وقتی که فشار به حد کاری رسید می توان با باز کردن شیر اصلی بخار (شماره 6) بخار را جهت مصرف در کارخانه یا استفاده در سیستم های گرمایش روانه ساخت.
فشار بخار دیگ را، کنترل کننده مدوله فشار اندازه گیری می کند. ازدیاد فشار باعث تحریک پتانسیومتر شده و دریچه بطور خودکار از طریق مدلیشن موتور سوخت و هوای مشعل را کم می کند. و آن را از حالت زیاد به حالت کم تبدیل می نماید و در صورت کمبود مصرف بخار مشعل را خاموش می سازد.
چنانچه مقدار بخار کمتری مورد نیاز باشد مشعل خاموش می شود. وقتی فشار بخار به حداقل خود رسید، کنترل کننده پتانسیومتری فشار، مجددا مشعل را روشن می نماید.
چنانچه به علتی کنترل کننده پتانسیومتری فشار عمل نکند یا خراب شده باشد، فشار در داخل دیگ بالا رفته تا به حد طراحی برسد .در این موقع شیر اطمینان دیگ عمل کرده و بخار اضافی دیگ را تخلیه نموده و فشار بخار را به حد مجاز می رساند و با این عمل از خطرات فشار اضافی درون دیگ جلوگیری می شود.
لرزش ها فشار درون دیگ از شیر بخار و دستگاههای کنترل کننده فشار به عقربه مانومتر منتقل می شود.
چنانچه به علتی آب تغذیه به دیگ نرسد و سطح آب دیگ از حد معمول پائین تر باشد. تخلیه دو حالته ضمن خاموش کردن مشعل، زنگ مشعل و چراغ اعلام خطر سطح آب کم است را روشن می کند. و فقط در صورت رسیدن آب به حد نرمال چراغ سطح آب کم است خاموش می شود و مشعل بطور اتوماتیک شروع به کار می نماید.
در صورت ادامه نزول سطح آب و رسیدن آن به زیر سطح نرمال زنگ و چراغ سطح آب خیلی کم است شروع به کار کرده و مشعل را خاموش می سازد. تا زمانیکه آب به سطح نرمال برسد مشعل شروع به کار نخواهد کرد. فقط با استفاده از کلید دستی می توان مشعل را مجددا روشن کرد.
با باز کردن شیر تخلیه آب می توان با خارج کردن آب دیگ مقداری از غلظت نمک های موجود کاست.
شیر هواگیری جهت تخلیه هوای دیگ زمان پر کردن با آب و نیز جهت تخلیه خلع موجود در موقع خاموش نمودن دیگ به کار می رود. وقتی دیگ در حال کاری است، این شیر باید بسته باشد.
جهت تامین آب مورد نیاز جهت آزمایش کیفیت آب دیگ از شیر کنترل املاح آب یا شیر نمونه برداری استفاده می شود.
صافی ورودی آب برروی لوله مکنده پمپ تغذیه نصب می گردد.
در دیگ هایی که در زمان های مشخصی کار می کنند می توان با نصب کلید نگهدارنده شعله، مشعل را تا رسیدن به فشار لازم در روی شعله کم نگهداری نمود.
در صورت افت سریع فشار دیگ می توان یک عدد شیر ضد مکش در لوله پمپ تغذیه نصب کرده یا این عمل از پر شدن بیش از حد دیگ در اثر اختلاف سطح مخزن تغذیه (که در ارتفاع بالاتری قرار دارد) جلوگیری نمود.
فشار پمپ تغذیه بایستی بیش از فشار ضد مکش باشد. در غیر این صورت بایستی از پمپ بزرگتر استفاده شود.
اصول کار مشعل سه گانه سوز AW:
مشعل AW مشعل مایع سوز افقی چرخشی با سوخت پاش گردان است. که محور آن بوسیله تسمه متحرک می شود و در انتهای محور پروانه هوادهی و پودر کننده سوخت قرار گرفته است.
سوخت با یک لوله به انتهای محفظه پروانه هوادهی و پشت مخروط پودر کننده که با سرعت 4600 دور در دقیقه یا بیشتر در حال چرخ است وارد می شود.
جریان سوخت با چرخش مخروط سوخت پاش (کاپ) در روی سطح داخلی آن به طرف جلو حرکت کرده و سرعتی معادل سرعت چرخش کاپ پیدا می کند، سوخت بوسیله نیروی گریز از مرکز روی سطح داخلی مخروط بطور یکنواخت شکل لایه نازک توزیع می گردد. لایه نازک سوخت هنگام پخش شدن روی لبه های مخروط سوخت پاش توسط هوای اولیه پروانه مشعل به صورت پودر تبدیل می شود. جهت پاشش سوخت در عکس جهت دمش هوای اولیه بوده و برخورد آنها بیشتر است و سوخت با این عمل کاملاً بصورت پودر در می آید.
پروانه مشعل تقریباً هفت در صد هوای لازم جهت احتراق را تهیه می کند. الباقی هوای لازم از طریق محافظ پستانک (nozzl shield) و از طریق شکاف موجود در حلقه های سیمانی جلو کوره تأمین می شود.
شافت مشعل بوسیله انتقال تسمه ای می چرخد موتور محرک محور مشعل توسط اتصال لولائی محکم شده و بوسیله پیچ و مهره مربوطه می توان کشش تسمه را تنظیم کرد.
جرقه زن الکتریکی گازی:
سوخت پودر شده بوسیله دستگاه جرقه زن بطور خودکار مشتعل می گردد. وقتیکه شمعک گازی بطور خودکار در اثر جرقه الکتریکی روشن شد مشعل شروع بکار می نماید و شعله تشکیل می شود. پس از تشکیل شعله جرقه بطور خودکار قطع می شود.
اصول کار پمپ و ارزه سوخت:
مشعل حاوی سیستم سوپاپ های تنظیم کننده است که توسط آنها مقدار سوخت مایع معرفی و پمپ شده و تنظیم می شود.
پمپ سوخت از چندین قسمت تشکیل شده است، که دو چرخ دنده که با چرخش یکی از آنها توسط الکتروموتر مشعل با دیگری دگیر شده و باعث رانش سوخت به سمت خروجی پمپ می گردد. شیر کنترل مقدار سوخت، توسط اتصالات مدلیشن به نسبت هوای ثانویه مقدار سوخت خروجی از پمپ سوخت را کنترل می کند.
فشار برگشتی سوخت در لوله برگشت نباید از مقدار 379/1 بار یا (20 پوند بر اینچ مربع ) تجاوز نماید. از این جهت شیر قطع کننده جریان در مسیر لوله برگشت قرار نمی دهند. ولی می توان یک شیر آزاد کننده فشار اضافی در مسیر برگشت سوخت نصب نمود که از ایجاد فشار اضافی و صدمه زدن به پمپ جلوگیری می نماید.
پمپ سوخت را از پشت محفظه دریافت کرده و با فشار به محفظه خروجی تخلیه می نماید. این پمپ به صورت شناور نبوده و نیاز به بیرون راندن خلاء در قسمت مکش دارد.
دریچه های گردان کنترل سوخت خروجی (والیو والو) بطور کامل دنده دار بهم درگیر شده اند بطوریکه اگر یکی از آنها جلو حفره ها را باز کند دریچه دیگر همان تعداد سوراخ را مسدود می نماید که در آن صورت مقدار متناسبی از حجم ثابت سوخت که از پمپ تخلیه خارج می شود به سیستم تغذیه و قسمت پودر کننده وارد می گردد و همین مقدار سوخت همواره از طریق سوپاپ تنظیم سوخت بدون توجه به تغییرات غلظت درجه حرارت و درجه سوخت مقدار معینی خارج می گردد.
چون سوپاپ های سوخت برای تهیه نسبت صحیح سوخت بین قسمت پودر کننده و مخزن سوخت می باشند مسلم است که فشار روی قسمت های خروجی در سوپاپ های تنظیم بایستی یکسان باشد.
پیستون متعادل کننده یک وسیله تنظیم کننده فشار می باشد که تعادل ثابت و یکنواختی از نظر فشار در قسمت های خروجی سوپاپ های تنظیم فشار فراهم آورد.
روش کنترل مشعل خودکار:
وقتیکه مشعل در حال کار است بازده مشعل برحسب فشار دیگ تغییر می کند. چنانچه در مقدار بخار خروجی دیگ کاهش داده شود. فشار داخلی دیگ افزایش می یابد این تغییر فشار بوسیله دستگاه تنظیم و کنترل فشار اندازه گیری می گردد و باعث تغییر متناسبی در موتور تنظیم کننده مشعل که موجب کاهش میزان نسبت هوا و سوخت می گردد.
چنانچه مقدار بخار مصرفی افزایش یابد فشار دیگ پائین آمده و در نتیجه نسبت هوا و سوخت بالا می رود. این عمل تا وقتیکه مشعل به حداکثر بار دهی خود برسد ادامه می یابد.
در فشار پائین که در آن نقطه بازده کار حداکثر است می توان اختلاف فشار را بوسیله دستگاه تنظیم و کنترل فشار تنظیم نمود. می توان تا حد امکان فاصله را بیشتر گرفت. هرگاه مصرف بخار کاهش یابد شعله کم می شود تا جائیکه به حداقل خود می رسد و چنانچه مقدار بخار مصرفی از حداقل بازدهی نیز کمتر شد فشار داخل دیگ افزایش می یابد تا اینکه شعله روی نقطه حداقل خود تنظیم می گردد. هنگامیکه فشار به p3 می رسد مشعل تحت عملکرد دکمه های حد فشاری از کار می افتد. و مشعل پس از زمانی مجددا شروع بکار می نماید. که فشار دیگ به حداقل فشار خود رسیده باشد.
فشار معمولاً پائین تر از فشار حد تنظیم می گردد. لیکن مشعل روی شعله پائین شروع بکار می نماید. اما بازدهی آن به تدریج که شعله به اندازه مربوط به فشار بالا می رسد افزایش می یابد.
مشعل های دو سوخته گاز و مایع :
کنترل هوای احتراق اولیه و ثانویه نظیر مشعل های مایع سوز می باشد. وقتی که سوخت مشعل گاز باشد اتصال محور مشعل با پمپ سوخت قطع می گردد. شیر جریان گاز از طریق میکروسوئیچ که توسط سیستم اینترلوک بکار می افتد جریان سوخت مشعل را جدا می سازد.
مقدار جریان گاز توسط شیر کنترل اندازه گیری می گردد. و پس از ورود از محور چند راهه به پستانک های گازی می رسد که در اندازه های مشخص نسبت به مشعل می باشد.
کنترل هوا و سوخت:
هنگامیکه سوخت دیگ گاز است، موتور تنظیم کننده سوخت مایع به کنترل دمپر هوای اولیه و ثانویه ادامه می دهد لیکن جریان تغذیه سوخت به پودر کننده توسط سوئیچ جدا کننده و قطع و میکروسوئیچ با سیستم اینترلوک به شیر گاز مربوط می گردد.
اندازه گیری گاز توسط موتور تنظیم و کنترل مشعل صورت می گیرد. و توسط یک سیستم تنظیم الکترونیکی کنترل می گردد.
مشعل های دو سوخته با نازل های دو سوخته طرح شده اند این مشعل ها از مشعل سوخت مایع با کاپ است که به آن مجاری گاز و یک حلقه شعله دهنده اضافه گردیده است. هوای اولیه توسط همان سیستم پروانه برای هر دو سوخت مایع و گاز تهیه می گردد. کنترل هوای ثانوی برای هر دو نوع سوخت نیز یکسان نیست.
عمل تبدیل از حالت سوخت مایع به گاز توسط سویچی که در تابلو برق قرار گرفته انجام می شود.
سوئیچ را در وضعیت گاز یا سوخت مایع می دهند و نیز جهت این تبدیل یعنی از حالت مایع به گاز لازم است که اتصال بین پمپ سوخت با مشعل قطع گردد. هنگامیکه دیگ با گاز کار می کند تمام شیر های اصلی جدا سازنده گاز بایستی باز و شیرهای سوخت مایع بسته شود و بر عکس هنگامیکه بخواهیم دیگ با سوخت مایع کار کند بایستی تمام شیرهای سوخت مایع باز و شیرهای اصلی گاز بسته باشند.
چنانچه پوسته محافظ سر نازل را برداریم منفذ های گاز کاملاً قابل دید می باشند که در آن صورت نیز می توان آن ها را پاک نمود. اندازه لوله منفذهای گاز دقیقاً برای نوع و فشار معین گاز تعیین گردیده اند. چنانچه در نوع یا فشار گاز تغییر داده شود در آن صورت لازم می آید که اندازه های جدیدی برای منافذ در نظر گرفته شود.
در ساختمان مشعل، به خاموش شدن بدون خطر توجه زیادی شده است. یعنی اگر تحت هر شرایطی جریان گاز و یا برق قطع شود فوراً در همان شرایط خاموش می شود و اگر پس از مدتی جریان برق مجدداً به دیگ وارد شود مشعل در حالت خاموش باقی می ماند تا اینکه مجدداً کلید دستی جهت شروع بکار فشار داده شود.
مشعل دو سوخته گاز و مایع:
گاز بایستی از منبع اصلی به سیستم گاز دیگ از طریق شیر، تحت فشار معین وارد گردد. فشار گاز منبع اصلی کمتر از مقدار لازم می باشد. مصرف کنندگان دیگ باید یک دستگاه بالابرنده فشار گاز لوله تغذیه قرار دهند تا فشار گاز با فشار مورد نیاز وارد سیستم گازی دیگ گردد. پس از عبور از شیر عبور جدا کننده اصلی وارد دستگاه تنظیم کننده می شود و از آن طریق شیرهای قطع اتوماتیک گاز مربوط به هیدروموتور وارد دستگاه کنترل فشار و بالاخره از طریق شیر های دستی قطع کننده گاز وارد مشعل می شود.
بین دو شیر گاز مربوط به دو هیدروموتور یک انشعاب جهت نصب دستگاه آزمایش آببندی وجود دارد که بعداً در این مورد توضیح داده خواهد شد. بین تنظیم کننده گاز و شیر اصلی گاز مربوط به هیدروموتور یک انشعاب دیگری وجود دارد. شیر آزاد کننده فشار اضافی گاز در این نقطه نصب می گردد. گازی که از طریق این شیر خارج می شود بایستی به بیرون از دیگخانه هدایت شود.
یک انشعاب دیگر نیر در قسمت بالای شیر جهت تهیه گاز شمعک (جرقه زن) وجود دارد. جریان گاز از طریق این انشعاب، وارد دو عدد شیر الکتریکی شمعک گاز شده سپس به شمعک می رسد.
سوئیچ های فشار گاز: سوئیچ فشارکم بین تنظیم کننده اصلی گاز و شیر گاز قرار داده شده است. این سوئیچ از طریق الکتریکی به تابلوی برق متصل می باشد و مشعل را در فشار کاری کمتر از حداقل از کار می اندازد.
به همین ترتیب یک سوئیچ فشار زیاد بین شیر دوم و شیر منی فولد قرار گرفته که موقع بالا رفتن فشار از حد ضروری مشعل را خاموش می کند.
آزمایش آببندی شیر های اطمینان مشعل گاز سوز توسط ازت بطور اتوماتیک وسیله ایمنی اولیه ای که روی مشعل نصب گردیده عبارتست از دو عدد شیر قطع جریان گاز که بطور سری به یکدیگر متصل شده اند برای اطمینان کامل از درست بسته شدن شیرهای قبل از روشن کردن مشعل آزمایش آببندی بایستی اجرا گردد. اگر مقدار نشت گاز بیشتر از مقدار مجاز باشد مشعل بطور خودکار از کار می افتد.
روش آزمایش آببندی:
تست های آبندی از قبیل تست هیدروژن و تست LDU11 نیز امروزه متدوال است طرز عمل این سیستم (تست هیدروژن) به ترتیب زیر است:
فشار گاز ازت توسط شیر های کنترل فشار A و B کنترل می گردد تا اینکه فشاری معادل فشار تنظیمی باضافه 7/24 تر بار پیدا می کند. (این فشار برابر 3 اینچ فشار آب) این گاز وارد فضای مسدود شده توسط دو شیر قطع M2 و M1 گردیده و سپس از طریق منفذ C مقدار معینی از آن وارد شیرهای قطع کنندهP1 و P2 شمعک می گردد. پس از اینکه فاصله زمانی که قبلاً تنظیم گردیده فشار در حجم مسدود شده فوق بالا می آید تا به حد فشار آزمایش آببندی توسط ازت برسد. در این صورت نشت گاز وجود نخواهد داشت و تنها جریان مشخصی از محدود کننده فشار C عبور خواهد کرد. این فشار بوسیله سوئیچ D بطریقه اینترلوک (جهت جریان روشن نمودن) مشعل بکار می افتد کنترل می گردد.
اگر پس از 40 ثانیه سوئیچ D بکار افتد در آن صورت مشعل از کار افتاده و زنگ به صدا در می آید. وظیفه شیر F جدا کردن جریان گاز ورودی از جریان جرقه می باشد. ممکن است این دو گاز در تأسیسات مختلف دارای گازهای فشاری متفاوت باشند. این مسئله به ما اطمینان می دهد که حداقل حجمی از گاز ازت بین شیر های جرقهp2 و p1و شیر F ) Block Valve) و شیر ازت E قرار گرفته و بنابراین می توان اطمینان نمود که مشعل در همان لحظه اول شروع بکار خواهد کرد.
دو تنظیم کننده فشار گاز ازت مقدار فشار ثابت لازم جهت آزمایش آببندی توسط ازت را در منفذ C بدون توجه به افت فشار در کپسول گاز ازت فراهم می سازد. پس بنابراین بایستی باندازه کافی ازت برای آزمایش در اختیار داشت زیرا این تنظیم کننده ها از نوع بدون لوله انشعابی (NON BLEED TYPE ) می باشند.
آزمایش آب بندی شیرهای اطمینان مشعل گاز سوز توسط ازت بطور غیر خودکار: در بحث قبلی اصول کلی سیستم آزمایش آببندی بوسیله ازت نشان داده شده است.
ادامه شروع بکار مشعل بشرح ذیل است:
هنگام روشن شدن مشعل کنتاکت های کلید فشاری بسته شده و کنتاکت های کنترل کننده روشن یا خاموش بودن شعله روی سیستم کنترل شعله و بسته شدن کنتاکت های سوئیچ یا کلید برقرار کننده هوای احتراق بسته خواهند شد. تا زمانیکه این شرایط برقرار است شیر های E و F انرژی برق را دریافت می کنند و در نتیجه ازت وارد محفظه بسته بین شیر های اطمینان قطع جریان می گردد.
در همین لحظه موتور تنظیم کننده هوای مشعل قبل از آن که مرحله تهویه کوره شروع شود از حالت آتش پائین بطرف وضعیت شعله زیاد تغییر می کند. زمان باز شدن تنظیم کننده هوا (دمپر) تقریباً 40 ثانیه است زمان باید جهت تثبیت فشار ازت تا حد فشار تنظیم باضافه 7/74 تر بار (30 اینچ درجه آب) در نظر گرفته شده است. اگر در انتهای این زمان (40 ثانیه) فشار لازم حاصل نگردد حتماً مشعل از کار می افتد. اما اگر در این مدت 40 ثانیه تثبیت فشار انجام گرفت صفحات تنظیم کننده هوا (دمپر) بطور کامل باز شده و کلید سری تبدیل می یابد و موتور فن شروع بکار می نماید و تهویه کوره شروع می گردد. پس از تهویه کوره شیرهای E و F انرژی خود را از دست می دهند و کنترل کننده هوا (دمپر) در جهت عکس حرکت خواهد نمود. تا به وضعیت شعله کم برسد. مهزمان با این عمل شیر آزاد کننده ازت C باز شده و اجازه می دهد که ازت از سیستم خارج شود. پس از جریان عادی مدار کار مشعل برفرار می گردد و سیستم تثبیت ازت پس از آن که شیرها کاملاً از نظر آببندی کنترل نمود وظیفه دیگری در مدار نخواهد داشت.
وسائل کمکی دیگ های بخار:
کنترل کننده مدوله فشار: این دستگاه فشارهای گوناگون دیگ بخار را اندازه گیری می کند. تغییر حالات فشار انبساطی یا انقباضی باعث حرکت عقربه روی سیم پیچ پتانسیومتری می گردد. و در وضعیت های مختلف بر حسب نیاز دیگ و شعله ضروری هوا لازم و سوخت ضروری را جهت احتراق مشعل تعبیه می کند.
تنظیم دستگاه کنترل فشار: پیچ تنظیم را تا قرار دادن عقربه متحرک در مقابل عدد دلخواه در روی صفحه اندیکاتور جهت تنظیم فشار قابل تنظیم است. فشار به اندازه حد تنظیم شده در مدوله تغیر خواهد نمود. در صورت نیاز باید فشار تنظیم شده در روی دیگ را بوسیله پتانسیومتر، با مانومتر اندازه گیری کرده و در صورت لازم تصحیح شود.
توجه: در صورت کمبود دامنه نوسان حد تنظیم شده فشار سیستم پایدار خواهد بود. برای رفع عیب در صورت امکان دامنه نوسان را زیادتر می کنیم تا سیستم پایدار تر شود.
کلید حد فشاری: روی دیگ بخار یک عدد کلید حد فشاری نصب شده است. کلید حد فشاری دارای میکروسوئیچی است که مدار را بصورت خودکار با بالا رفتن فشار قطع و با پائین آمدن آن وصل می نماید. این کلید حد فشاری قابل تنظیم است.
١- فشار دلخواه را در روی صفحه اصلی (نشان دهنده فشار ) انتخاب می کنیم.
٢- دامنه نوسان را برای نقطه دلخواه قطع فشار تنظیم می کنیم.
قرار دادن حد فشار در اندیکاتور اصلی: پیچ تنظیم فشار را بوسیله پیچ گشتی چرخانده تا عقربه نشان دهنده فشار در روی صفحه مربوطه عدد مورد نیاز را نشان بدهد.
فشار دامنه نوسان نقطه ایست که در آن نقطه مدار قطع یا وصل شده و بوسیله پیچ تنظیم مربوطه تنظیم می گردد.
کنترل کننده های سطح آب: دو نوع کنترل کننده سطح آب در هر دیگ بخاری نصب می گردد. با یکی از کنترل کننده ها پمپ تغذیه کار می کند و نیز در اولین مرحله کمبود سطح آب مشعل را خاموش می سازد. کنترل کننده ثانویه مثل یک کنترل کننده مستقل در دومین مرحله کمبود سطح آب عمل می کند. کنترل کننده پمپ تغذیه و نخستین مرحله کمبود سطح آب و اعلام خطر، پمپ تغذیه دیگ های بخار با قدرت 48000 پاند در ساعت یا 150/8 کیلوگرم و بیشتر با سیستم مدوله (کنترل سطح آب) کنترل می شود.
برای دیگ ها با قدرت 1500 پاند در ساعت یا 6800 کیلوگرم در ساعت پمپ تغذیه بوسیله کنترل دوبله (dmal control) کنترل می گردد.
کنترل مدوله سطح آب: این کنترل کننده جهت جبران کمبود سطح آب متناسب با بخار تولیدی طراحی شده است و بر حسب بار حرارتی موجود کمبود سطح آب دیگ را برطرف می کند. کنترل کننده سطح آب از سه قسمت زیر تشکیل شده است.
١- شناور: که در روی سطح آب دیگ در سطح بخاری مورد نیاز نصب می شود.
٢- شیر کنترل مدوله: یک عدد شیر کنترل مدوله آب تغذیه در مدار آب تغذیه جهت رفع کمبود آب دیگ نصب می گردد.
٣- جعبه کنترل: یک عدد جعبه کنترل در روی بدنه سطح منبع نصب شده است.
محفظه شناور: محفظه شناور شامل یک شناور و میله آهنی محرک است. میله محرک درون لوله ضدزنگ بطور آزاد در سمت بالا و پائین حول کوئیل حرکت می کند. حساسیت القائی کوئیل با حرکت میله فلوتر باعث جبران کمبود سطح آب دیگ می گردد.
شیر کنترل مدوله: شیر مدوله با یک محرک و کوئیل حساس نصب شده است. ضریب القائی حساسیت کوئیل بوسیله حرکت هرزگرد شیر کنترل مدوله تغییر می کند. جریان آب تغذیه ورودی به دیگ بخار بوسیله سرپوش پیستون گازی شیر مدوله کنترل می شود. که بوسیله دو عدد شیر برقی نصب شده در شیر مدوله تحریک می گردد.
شیر برقی ورودی آب را در خط تغذیه می پذیرد و سپس در سیلندر فشرده و پیستون کاهش دهنده شیر مدوله را باز می کند. شیر برقی تخلیه آب را از سیلندر پیستون آزاد کرده (یک کمک فنر موجود ) باز شدن شیر مدوله را افزایش می دهد. شیر مدوله وقتیکه هر دو شیر برقی بسته باشند به طریق هیدرولیکی بسته می شود. جعبه کنترل جعبه کنترل شامل یک مدار چاپی و بلوک ترمینال ها ورودی وسایل زیر می باشد.
١- شیر های برقی.
٢- کوئل های حساس.
٣- اولین آلارم کمبود سطح آب.
٤- اتصالات قطع مشعل به علت کمبود سطح آب .
جعبه کنترل اعمال مختلف در تعادل بین کوئل القائی و شیر کوئل و نیز سیگنال جای متناسب جهت باز شدن شیر را انجام می دهد.
بالا آمدن سطح آب در داخل دیگ (کاهش نسبت تبخیر): با بالا آمدن فلوتر تحریک کننده میله فلوتر ضریب القائی کوئل را عوض می کند. جعبه کنترل تعویض ضریب القائی را حس کرده و شیر برقی ورودی راباز می کند (شیر برقی تخلیه به حالت بسته باقی می ماند). سپس شیر برقی ورودی فشار پمپ تغذیه را سری پیستون باز کرده و سرپوش شیر مدوله را به طرف پائین می راند و با این عمل آب ورودی دیگ کم می شود. بسته شدن شیر مدوله تا تساوی ضریب القائی کوئیل با ضریب القائی کوئیل ادامه پیدا می کند. جعبه کنترل، شیر برقی ورودی را بسته و قفل شیر مدوله را در حالت جدید می بندد یا با بالا رفتن سطح آب اعمال فوق تکرار می شود. شیر مدوله با کمترین توقف به نسبت بخار تبخیر شده باز می شود.
پائین آمدن سطح آب در داخل دیگ بخار (افزایش نسبت تبخیر): بر عکس مراحل فوق شیر برقی خروجی باز می شود و فشار هیدرولیک پیستون شیر مدوله را باز کرده و جریان آب به داخل دیگ هدایت می شود. گاهی به علت کمبود سطح آب کنتاکتی در جعبه کنترل بوجود می آید که آلارم کمبود سطح آب روشن و مشعل خاموش می گردد.
در کنترل کننده مدوله دو عدد شیر سوزنی که قادر است به طور مستقل با شیر برقی کارکند نصب شده است. چنانچه دیگ در حالت دستی کار کند شیر کنترل اضطراری تماماً باز می شود.
کنترل کننده دوتائی سطح آب: کنترل کننده دوتائی سطح آب شامل دو عدد پرینت سوئیچ و آهنربای کمکی دائمی انتهای میله فلوتر است. غلاف های عمودی داخل لوله ضد زنگ بودن خاصیت آهنربائی است. با عبور عمودی فلوتر در جهت بالا و پائین بوسیله آهنربای یونیت سوئیچ ها روی میله های نگهدارنده نصب شده که در مجاورت لوله مرکزی قرار گرفته اند و دارای یک جفت کنتاکت هستند که بصورت ضربه ای کار می کنند و بوسیله نیروی عکس العمل بین آهنربای دوم و سوم بکار می افتد.
وقتیکه شناور به طرف پائین حرکت می کند یونیت سوئیچ اولی موتور پمپ تغذیه را روشن می نماید. زمانیکه جهت حرکت شناور عوض می شود و به طرف بالا حرکت می کند موتور پمپ آب تغذیه خاموش می کند. در این طریق سطح آب دیگ بخار حدود حد نرمال نگه داشته می شود.
دومین یونیت سوئیچ در اولین آلارم کمبود سطح آب بکار می افتد و با رخ دادن حالت کمبود سطح آب در داخل دیگ بخار مشعل را خاموش می کند.
کنترل کننده سطح آب خیلی کم: دیگ بخار به کنترل کننده سطح آب خیلی کم مجهز است. این کنترل کننده شبیه کنترل کننده دوتائی فوق الدکر بوده و فقط حاوی یک عدد یونیت سوئیچ است. وقتی حالت کمبود خیلی کم سطح آب رخ دهد مدار مشعل بوسیله این دستگاه قطع شده و آلارم مربوطه روشن می شود. مشعل فقط در صورت نرمال شدن سطح آب با چرخاندن کلید رفع خطر (reset) در روی تابلو کنترل روشن خواهد شد.
پمپ های تغذیه: پمپ های استاندارد که در روی دیگ های بخار به قدرت (3150- 1590) کیلوگرم در ساعت یا (35000- 6590) پاند در ساعت نصب می شود.
پمپ تغذیه بطور چند مرحله ای گریز از مرکز با عمر طولانی با دوام قابل اعتماد با کار ملایم و کم صدا طراحی شده است. پمپ های تغذیه با ساختمان عمودی با گشتاور مستقیم و فلانچ مربوطه نصب شده اند و الکتروموتور آن ضد آب است. پمپ ها در اندازه های مختلف برای دیگ ها با قدرت ها و فشار های گوناگون ساخته می شوند. جهت کسب اطلاعات بیشتر به کاتالوک پمپ ها رجوع کنید.
پمپ ها تغذیه خودپرشو نیستند . باید با چرخاندن فلنچ آنها بوسیله دست درون آنها را کاملاً پر کرده تا آب تازه از آن خارج شود.
توجه: نبایستی پمپ تغذیه را بدون پر کردن راه اندازی کرد.
اگر دیگ بطور خودکار خاموش و پس از مدتی روشن شود بایستی یک عدد شیر ضدمکشی در مسیر خط تغذیه نصب شود که در غیر این صورت با کم شدن فشار دیگ آب مخزن تغذیه به داخل دیگ نفوذ کرده و لوله ها پر آب و بخار می شوند. با نصب یک عدد شیر ضد مکشی در مسیر پمپ تغذیه ممکن است قدرت پمپ تغذیه جهت تزریق آب به داخل دیگ کم شود.
وقتیکه سیستم تغذیه آب دیگ بخار مدوله باشند ممکن است با نصب شیر ضدمکشی ظرفیت شیر مدوله کم شود که در این صورت بایستی شیر مدوله قوی تری نصب نمود.
فهرست پمپ ها در فشار 43/10 بار و یا psi150 و در شرایط زیر پمپ های مخصوص استفاده می شود.
1- دیگ بخار با فشار کاری 43/10 با و یا psi150
2- دیگ های بخار با قدرت 6800 کیلوگرم در ساعت یا 15000 پوند در ساعت که به سیستم مدوله تغذیه آب مجهز هستند.
3- دیگ ها با قدرت بیش از 900 و 15 کیلوگرم در ساعت یا 35000 پوند در ساعت.
چنانچه با توجه به دلائل مختلف ضروری است که پمپ ویژه بکار برده شود بایستی به کاتالوک کارخانه سازنده رجوع کرد.
در نظر گرفتن یک اضافه اندازه جهت لوله مکش آب تغذیه مسئله مهمی است. مخزن آب تغذیه بایستی همیشه در جائی بالاتر از سطح زمین و مسلط به دیگ بخار نصب شود. در محل ورودی آب به پمپ سطح مکش مثبت وجود داشته باشد.
توجه: به کار انداختن پمپ تغذیه در حالت خشک اکیداً ممنوع است.
اولين سايت تخصصي آموزش و نگهداري و تعميرات ديگ بخار، ديگ آبگرم، ديگ روغن داغ و آموزش نگهداري و طراحي تاسيسات در ايران به صورت کاملا فارسي، و با استناد به آخرين دستاوردهي تکنولوژي ديگ هاي بخار و تاسيسات مربوطه، در جهان.
تاریخچه و انواع دیگ های بخار :
همزمان با ورود بشر دوران صنعتی که با استفاده گسترده تر انسان از نیروی ماشین در اوایل قرن هجدهم میلادی آغاز شد.
تلاشهای افرادی نظیر وات ،مارکیز …، از انگلستان در ارتباط با گسترش بهره برداری از نیروی بخار و طراحی و ساخت دیگ های بخار شروع شد.
دیگ های بخار اولیه از ظروف سر بسته و از ورق های آهن که بر روی هم بر گرداننده و پرچ شده بودند و شامل اشکال مختلف کروی و یا مکعب بودند ساخته شدند.
این ظروف بر روی دیوارهای آجر بر روی آتش قرار داده شده و در حقیقت برون سوز محسوب می شدند.
این دیگ ها در مراحل آغاز بهره برداری تا فشار حدود 1bar تامین می نمودند که پاسخگوی نیازهای آن دوره بود ولی به علت تشکیل رسوب و لجن در کف دیگ که تنها قسمت تبادل حرارت آب با شعله بود، و با بروز این مشکل، دمای فلز به آرامی بلا رفته و موجب تغییر شکل و دفرمه شدن فلز کف و در نتیجه ایجاد خطر انفجار می شد.
همزمان با نیاز به فشار های بالاتر بخار توسط صنایع، روند ساخت دیگ های بخار نیز تحولات بیشتری را تجربه نمود.
بدین جهت برای دستیابی به بازده حرارتی بشتر، نیاز به تبادل حرارتی بیشتری احساس می شد، در نتیجه سطوح در معرض حرارت با در نظر گرفتن تعداد زیادی لوله باریک که در آن ها گازهای گرم، جریان داشتند و اطراف آنها آب وجود دارد، افزایش یافتند. این دیگ ها با داشتن حجم کمتر راندمان مناسبی داشتند.
دیگ های بخار لوله دودی امروزی با دو یا سه پاس در حقیقت انواع تکامل یافته دیگ های مذبور می باشد.
تحول عمده دیگر در ساخت این نوع دیگ ها، تکامل از دیگ های فایرتیوپ سه پاس (عقب خشک) به ساخت دیگ های ویت یک (عقب تر) می باشد.
در دیگ های عقب خشک انتهای لوله های پاس 2 و 3 هر دو به یک سطح شبکه متصل می شوند، که به علت اختلاف دمای فاحش گازهای حاصل احتراق در پاس 2 ( 1000 درجه سانتیگراد ) و پاس 3 ( حداکثر 250 سانتیگراد ) سطح این شبکیه دچار تنش و در نهایت نشتی می شود. همچنین دیگ های عقب خشک نیاز به عایق کاری و انجام تعمیرات بر روی مواد نسوز طاقچه جدا کننده پاس 2 و 3 نیز در فواصل زمانی کوتاه دارند، که موجب افزایش هزینه نگهداری و ایجاد وقفه در تولید می شوند.
جهت حل مشکلات فوق شرکت ینکلن در سال 1935 طرح جدید ساخت دیگ های بخار 3 پاسه را به ثبت رساند، که مشکل اختلاف دمای زیاد صفحه و لوله ها را که تحت اختلاف شدید دمای زیاد قرار داشتند را از طریق ایجاد دو صفحه شبکیه جداگانه برای هر دو دسته از لوله ها بر طرف ساختند. این طرح سطوح عایق کاری شده در دیگ های عقب خشک را نیز تبدیل به سطوح مفید و جاذب حرارت نمود.
مزایای طرح لینکلن که منجر به ساخت دیگ های بخار عقب تر (WET_back) گردید، موجب شده این ساختار جدید تا امروز همه جا رواج پیدا نماید.
ظرفیت این دیگ ها حداکثر تا 4.3mw می باشد.
جهت دستیابی به ظرفیت های بالاتر، نوع دیگری از دیگ های بخار با ساختاری متفاوت بنام دیگ های لوله آبی (واتر تیوپ) ساخته شده و تکامل یافته اند. امروزه تعداد زیادی از دیگ های بخار لوله آبی با مشخصاتی نظیر فشار نامحدود و ظرفیت ها ی بالا، با راندمان 90-85 درصد جهت تولید نیرو در کارخانجات بزرگ و نیرو گاه ها و ... نصب و مشغول به کارند.
منبع:
http://www.steemboiler.com/
http://www.builderweb.com/
http://irancivilcenter.c (http://irancivilcenter.com/)
Sara12
11-30-2010, 10:27 PM
عنوان آزمایش: سنتز آسپرین
هدف آزمایش : آشنایی با روش ساخت آسپرین
وسایل لازم: حمام بن ماری، بشر، دماسنج جیوه ای، قیف، کاغذ صافی، پیپت و پیست
مواد لازم: سالسیلیک اسید، انیدرید استیک و سولفوریک اسید
تئوری:
بيشتر استرها مايع و يا بلورين بوده و بوي مطبوع دارند . واکنش عمده ي استرها عبارتند از صابوني شدن (وارون استري شدن) , تشکيل اسيد آميد (آمونوليز) هيدروژن دار شدن (کاهش بووبلان) , توليد الکلهاي نوع سوم (واکنش گرينيارد) و تبديا استري (الکوليز). بهترين روشها براي تهيه ي استرها عبارتند از :
1- روش معمول براي تهيه ي استر , ترکيب اسد و الکل مي باشد , مثل ترکيب استيک اسيد با اتانول که توليد اتيل استات و آب مي کند .
2- از ترکيب نمک هاي کربوکسيلي اسيد به ويژه نمک هاي نقره با الکيل يديد , استر به دست مي آيد.
3- از ترکيب انيدريدها با الکلها , استر توليد ميشود . اين واکنش بهره خوبي داشته و سرعت آن توسط پيريدين افزايش ميابد .
4- روش ويژه براي تهيه استرهاي متيل , واکنش اسيدها با ديازومتان در محلول اتري ميباشد .
کاربرد استرها :
چربي ها , مومها و روغنها از اهميت ويژه اي برخوردارند . استر ها به عنوان حلال کاربرد وسيعي داشته و از استر هاي فسفريک اسيد به عنوان حشره کش و سلاح شيميايي استافاده ميشود . از استر هاي نيترو اسيد براي تسريع اشتعال در موتورهاي ديزلي و نيز در پزشکي براي مداراي آهژين (ايزو آمين نيتريک) بهره ميگيرند . استرهاي نيتريک اسيد , به ويژه گليسيرين تري نيترات , اغلب به عنوان ماده منفجره کاربرد دارند .
آسپيرين :
جسمي با فرمول شيميايي : که آن را استيل ساليسيليک اسي نيز گويند . آسپيرين به صورت قرص براي تسکين درد و کاهش تب , به کار ميرود .
داستان کشف آسپرین:
Felix Hoffmann
سازنده اولین قرص آسپرین
فردریک بایر (Fredrich Bayer) در سال 1825 بدنیا آمد. پدر او یک نساج و رنگرز پارچه بود و طبق عادت آن زمان وی در ابتدا شغل و حرفه پدر را برای کار انتخاب کرد و پس از مدتی فعالیت با پدر، در سال 1848 تشکیلاتی مشابه برای خود راه اندازی کرد و در آن حرفه بسیار هم موفق شد.
تا قبل از 1856 برای رنگرزی از مواد رنگی طبیعی استفاده می شد اما با کشف و صنعتی شدن ساخت رنگهای حاصل از مواد نفتی، بایر که پتانسیل موجود در این کشف را بخوبی احساس کرده بود با کمک شخصی بنام فردریک وسکوت (Friedrich Weskott) کمپانی Bayer را راه اندازی کرد.
بایر در ماه می سال 1880 در گذشت و تا آن زمان کمپانی هنوز در فعالیت رنگرزی مشغول بود، اما شرکت تصمیم گرفت با استخدام تعدادی شیمیدان نوآوری هایی در این صنعت بوجود آورد و این اتفاق هم افتاد اما نه در صنعت رنگرزی.
هنگامی که فلیکس هوفمن (Felix Hoffmann) در حال انجام آزمایش با یکسری از ضایعات رنگی بود تا شاید بتواند دارویی برای درمان درد ناشی از بیماری پدرش بدست آورد توانست به پودری دسترسی پیدا کند که امروزه شما آنرا به نام آسپرین می شناسید.
هوفمن آسپرین را کشف نکرد
تعجب نکنید! هوفمن آسپرین را دوباره کشف کرد. آسپرین چهل سال قبل توسط یک شیمیدان فرانسوی کشف شده بود، این شیمیدان بخوبی می دانست که پودر اسید استیل-سالی-سیلیک (acetylsalicylic acid) دارای خاصیت شفا بخشی بسیار می باشد. در واقع بیش از 3500 سال بود که بشر این پودر را می شناخت چرا که در سال 1800 یک باستان شناس آلمانی که در مصر تحقیق می کرد، با ترجمه یکی از پاپیروس های مصری متوجه شد که بیش از 877 نوع مواد دارویی برای مصارف مختلف در مصر باستان شناخته شده بود که یکی از آنها همین پودر اسید بود که برای برطرف کردن درد از آن استفاده می شد.
Fredrich Bayer ، موسس شرکت بایر
در برخی از شواهد و نوشته های دیگری که در یونان بدست آمده است نیز مشخص شده که بشر حدود 400 سال پیش از میلاد از شیره پوست درخت بید برای درمان تب و درد استفاده می کرده است. همچنین آنها هنگام زایمان زنان از این ماده برای کاهش درد استفاده می کردند. امروزه مشخص شده که ماده موجود در این شیره چیزی جز اسید سالی-سیلیک نیست.
ثبت رسمی کشف آسپرین
در ماه مارچ 1899 کمپانی بایر رسما" محصول خود بنام آسپرین را به ثبت رساند و به دنبال آن در سایر کشورهای جهان نیز تحقیقاتی گسترده راجع به این دارو انجام گرفت بگونه ای که هنگام بازنشستگی هوفمن در سال 1928، آسپرین در تمام دنیا شناخته شده بود.
آسپرین از مهمترین اکتشافات هوفمن بود اما این تنها کشف او نبود. درست چند روز پس از کشف آسپرین هوفمن به ماده ای دست پیدا کرد که امروز در بازار بنام هروئین (Heroin) مشهور شده است. از این ماده مخدر در تمام مدت جنگ جنگ جهانی اول بعنوان یک دارو استفاده می شد اما امروزه در تمام کشور های جهان از فهرست دارو ها خط خورده است.
شرح کار:
مقدار 2 گرم سالسیلیک اسید را در 3 میلی لیتر انیدرید استیک حل نموده و 2 قطره اسید سولفوریک به عنوان کاتالیزور به آن اظاف می کنیم، مخلوط را با یک هم زن کمی به هم زده و به مدت 15 الی 20 دقیقه روی یک بن ماری در درجه حرارت 50 الی 60 درجه سانتی گراد حرارت می دهیم. سپس کمی اجازه می دهیم تا مخلوط خنک شود و به آن 20 میلی لیتر آب مقطر اظافه می کنیم و رسوبات را صاف می نماییم.
http://i40.tinypic.com/24ena1g.jpg
موارد خطا:
چنانچه دمای بن ماری از از 60درجه سانتی گراد بالاتر رود آسپرین تجزیه می شود.
نتیجه گیری:
با توجه به اینکه واکنش انجام گرفته از نوع جانشینی نکلئوفیلی می باشد و نکلئوفیل از طریق زوج الکترون اتم اکسیژن گروه الکلی سالسیلیک اسید به کربن گروه کربونیل گروه انیدرید استیک حمله می کند و به دلیل خنثی بودن ( نکلئوفیل آنیون نمی باشد) قدرت آن نسبتاً کم است از اسید سولفوریک به عنوان کاتالیزور استفاده می شود تا باعث فعال شدن مکانی گردد که نکلئوفیل می خواهد به آنجا حمله کند و نهایتاً در ملکول آسپزین یک پیوند استری تشکیل می شود.
منابع:
http://www.senmerv.com
http://www.iranchem.blogfa.com (http://www.iranchem.blogfa.com/)
Sara12
11-30-2010, 10:28 PM
عنوان آزمایش:تعیین ویسکوزیته سینماتیک
هدف : تعیین ویسکوزیته سینماتیک استون و الکل بوسیله ویسکومتر
ابزار لازم: پی ست/ویسکومتر/شیلنگ کوچک/گیره و پایه/ کرنومتر
مواد لازم: استون / الکل / آب
تئوری:
ويسکومتر:
ويسکومتر وسيله اي براي سنجيدن ميزان ويسکوزيته مايعات است.براي موادي که ويسکوزيته آنها با جريان يافتن تغيير مي کند از ويسکومتر ويژه اي به نام رئومتر استفاده مي گردد.در حالت کلي در يک ويسکومتر دو حالت وجود دارد:
يا مايع ويسکوز ساکن است و يک شي جانبي در داخل آن(ابزار اندازه گيري ويسکوزيته) حرکت مي کند و يا وسيله اندازه گيري ويسکوزيته ساکن بوده و سيال ويسکوز حرکت مي کند.نيروي کششي که سبب ايجاد حرکت نسبي سيال نسبت به سطح مي شود مي تواند به عنوان عاملي براي اندازه گيري ويسکوزيته به کار گرفته شود.حالت جريان بايد به گونه اي باشد که عدد رينولدز به حدي کوچک باشد که بتوان جريان را آرام فرض نمود.در دماي 20 درجه سلسيوس ويسکوزيته آب 1.002mpa.s است و ويسکوزيته جنبشي آن (نسبت ويسکوزيته با دانسيته) برابر با 1.0038mm2/s است لازم به ذکر است مقادير فوق جهت کاليبراسيون ويسکومتر ها به کار مي رود.
ويسکومتر هاي استاندارد آزمايشگاهي براي مايعات:
اين ويسکومتر ها براي سنجش ويسکوزيته مايعاتي با دانسيته معين به کار مي رود.
ويسکومتر هاي U شکل(U-tube viscometers):
اين نوع ويسکومتر ها بيشتر به افتخار ويليام استوالد(Wilhelm Ostwald) با عنوان ويسکومتر استوالد(Ostwald viscometers)شناخته مي شوند که به ويسکومتر هاي شيشه اي مويين هم مشهوراند.از انواع ديگر مي توان به ويسکومتر هاي آبلهود(Ubbelohde viscometer) اشاره نمود.اين نوع ويسکومتر اساسا از يگ لوله شيشه اي U شکل که بصورت عمودي و در يک حمام کنترل دما قرار دارد تشکيل شده است.در يک سمت اين لوله يک مقطع عمودي با قطر باريک که دقيقا اندازه گيري شده است قرار دارد(يک لوله موئين با قطر مشخص).در بالاي اين قسمت يک منطقه بر آمده قرار دارد و يک بر آمدي ديگر پايين تر از آن در سمت ديگر لوله قرار داده شده است که در هنگام استفاده سيال بوسيله يک مکنده(Suction) از محفظه پاييني به محفظه بالايي کشيده مي شود و سپس اجازه داده مي شود تا از طريق لوله موئين به محفظه پاييني جريان يابد.دو نشانه موجود در بالا و پايين محفظه بالايي حجم مشخصي را نشان مي دهند که زمان مورد نياز تا انتقال سيال بين اين دو نشان با ويسکوزيته جنبشي متناسب است.اکثر واحد هاي تجاري يک فاکتور تبديل براي اين مورد تهيه مي کنند که با يک مايع با مشخصات کاملا معين(مثلا آب مقطر) کاليبره مي شود.
زمان مورد نياز براي انتقال کل سيال مورد آزمايش از محفظه بالايي به پاييني که بين دو شاخص محفظه بالايي قرار گرفته است به دقت اندازه گرفته مي شود با ضرب زمان بدست آمده به ضريب تبديل ويسکومتر ويسکوزيته جنبشي سيال محاسبه مي شود. به دليل تاثير دما در ويسکوزيته سيل اين ويسکومتر ها اغلب در يک دماي ثابت و در داخل يک حمام آب قرار مي گيرند.
اينگونه ويسکومتر ها اغلب بصورت ويسکومتر هايي با جريان مستقيم و يا معکوس رده بندي مي شوند.
ويسکومتر هاي جريان معکوس داراي يک مخزن در قسمت بالاي نشانه ها هستند ولي در ويسکومتر هاي با جريان مستقيم اين مخزن در زير شاخص ها قرار دارد.گونه اي از ويسکومتر ها هم وجود دارند که بصورت ترکيبي از دو ويسکومتر مذکور هستند که براي اندازه گيري ويسکوزيته مواد کدر(مات) يا مواد لکه زا (آلاينده)طراحي شده اند به عبارت ديگر سيال ديواره را آلوده مي کند و شناسايي عبور کل سيال بين دو شاخص و در نتيجه اندازه گيري زمان دقيق را غير ممکن مي سازد ويسکومتر ترکيبي اين اجازه را به اپراتور مي دهد که بجاي اندازه گيري زمان تخليه سيال بين دو شاخص مخزن بالا زمان پر شدن مخزن پاييني را اندازه بگيرد و اين امر تا حد زيادي از خطاي ويسکومتري مي کاهد.
ويسکومتر هاي سقوطي(Falling sphere viscometers):
قانون استوکس(Stokes' law)اساس ويسکومتر هاي سقوطي را تشکيل مي دهد.در صورتي که سيال بصورت استاتيک در داخل يک لوله عمودي شيشه اي قرار دارد اجازه مي دهيم يک شار فلزي کوچک که اندازه و دانسيته آن مشخص است در داخل سيال سقوط کند .اگر شما بتوانيد سرعت سقوط شار( مدت زمان لازم براي عبور شار از ميان دو شاخص) را به درستي ثبت نماييد(براي راحتي کار و دقت بالا مي توان از حسگر هاي الکترونيکي براي اين کار استفاده نمود.).با در دست داشتن سرعت شار،اندازه و دانسيته شار و دانسيته سيال مورد نظر مي توان از قانون استوکس براي محاسبه ويسکوزيته سيال استفاده نمود.يک سري از گلوله هاي فلزي با اندازه ها متفاوت جهت بالا بردن دقت محاسبات بايد به کار گرفته شوند.در آزمايش ها معمولا از گليسيرين به عنوان سيال استفاده مي شود که دانشجويان با استفاده از تکنيک مذکور ويسکوريته آن را محاسبه مي کنند ولي مي توان از انواع روغن ها و يا مواد پليمري براي اين منظور استفاده نمود.
در سال 1851 آقاي جرج گابريل استوکس(George Gabriel Stokes) رابطه اي را براي محاسبه نيروي اصطکاکي(نيروي کششي) بدست آورد که از قرار زير است:
که در اين رابطه داريم:
· F is the frictional force,
· r is the radius of the spherical object,
· η is the fluid viscosity, and
· v is the particle's velocity.
اگر شي مربوطه در داخل يک سيال ويسکوز با نيروي وزن خود سقوط کند و مي توان سرعت سقوط آن را از رابطه زير محاسبه کرد:
که در اين رابطه داريم:
· Vs is the particles' settling velocity (m/s) (vertically downwards if ρp > ρf, upwards if ρp < ρf),
· r is the Stokes radius of the particle (m),
· g is the gravitational acceleration (m/s2),
· ρp is the density of the particles (kg/m3),
· ρf is the density of the fluid (kg/m3), and
· μ is the (dynamic) fluid viscosity (Pa s).
بايد توجه داشت که قانون استوکس با فرض کوچک بودن رينولدز بدست آمده است.
ويسکومتر هاي لرزشي(Vibrational viscometers):
مبناي کار ويسکومتر هاي لرزشي اندازه گيري مقدار کاهش نوسانات الکترومغناطيسي لرزاننده هنگام لرزش در داخل سيال مورد آزمايش است.لرزاننده معمولا بصورت دوراني(بوسيله يک سگدست متصل به يک موتور الکتريکي) يا ارتعاشي(بصورت دياپازوني) کار مي کنند .هر قدر ويسکوزيته سيال بالا باشد به همان ميزان هم ميزان افت لرزش هاي ايجاد شده توسط لرزاننده بيشتر خواهد بود.
ميزان کاهش ارتعاشات لرزاننده مي تواند با يکي از روش هاي زير اندازه گزفته شود:
1. اندازه گيري مقدار انرژي لازم جهت ثابت نگه داشتن دامنه ارتعاشات نوسانگر در يک دامنه ارتعاشي مشخص.در اين روش بايد متذکر شد در سيالاتي با ويسکوزيته بالا انرژي بيشتري جهت ثابت ماندن دامنه ارتعاشي نوسانگر بايد مصرف شود.
2. اندازه گيري زمان لازم جهت توقف کامل نوسانگر بعد از خاموش شدن آن.در اين روش بايد متذکر شد زمان لازم جهت توقف نوسانگر با ويسکوزيته سيال متناسب است و هر اندازه ويسکوزيته بالا باشد مدت زمان لازم جهت توقف نوسانگر نيز کمتر خواهد بود.
3. اندازه گيري فرکانس نوسانگر بصورت تابعي از کنش وارد شده به سيال و واکنش سيال نسبت به آن که در اين روش هم سيالاتي با ويسکوزيته بالا به نسبت تغيير فرکانس بيشتري هنگام تغيير فاز از خود نشان مي دهند.
نتيجه ارائه شده توسط دستگاه هاي سنجش ويسکوزيته با روش ارتعاشي به دليل عدم اندازه گيري تنش سطحي(shear field) جهت اندازه گيري ويسکوزيته سيالاتي که رفتار جرياني آن براي کاربر نامشخص است نمي تواند قابل اطمينان باشد.
ويسکومتر هاي لرزشي براي اندازه گيري ويسکوزيته درطي فرآيندهاي صنعتي به کار مي رود.
در اينگونه ويسکومتر ها سنسور به ميله نوسانگر متصل مي شود .تغييرات دامنه نوسانگر با ويسکوزيته سيالي که بخش لرزاننده ويسکومتر را مي پوشاند متناسب است.اين روش براي اندازه گيري ويسکوزيته سيالات ژلاتيني و سيالاتي با ويسکوزيته بالا (بالاي 1000pa.s) کاربرد دارد.در حال حاظر به دليل کارايي بالاي اين ويسکومتر ها صنايع توجه خود را معطوف استفاده بهينه از اينگونه ويسکومتر ها نموده و سعي در افزايش دقت و کارآيي اين نوع دارند.
اين دسته از ويسکومتر ها بسيار مستحکم بوده و تمام اجزاي آن از مقاومت بالايي برخوردار هستند و تنها قسمت حساس آنها حسگر کوچک تعبيه شده در بخش لرزاننده است به همين دليل مي توان ويسکوزيته انواع مواد مختلف بخصوص سيالات اسيدي را با اين نوع اندازه گرفت به شرط آنکه :يا سيال را در داخل يک پوشش خاص قرار داد و يا حسگر را از مواد مقاوم در برابر اسيد ساخت که مي توان به 316L, SUS316, Hastelloy, or enamel اشاره کرد.
ويسکومتر هاي دوراني(Rotation viscometers):
اينگونه ويسکومتر ها بر ايده اندازه گيري مقدار گشتاور لازم جهت به چرخش در آوردن يک جسم خارجي در داخل سيال استوار هستند که مي تواند راهي براي اندازه گيري ويسکوزيته سيال باشد.
به عنوان مثال ويسکومتر هاي بروکفيلد(Brookfield-type)بر مبناي اندازه گيري مقدار گشتاور لازم جهت چرخش يک ديسک با سرعتي مشخص در داخل سيال کار مي کنند.
در ويسکومتر هايCup and bob مقدار معيني سيال در داخل مخزن مخصوصي ريخته مي شود و گشتاور لازم جهت چرخش يک ديسک در داخل سيال با يک سرعت مشخص به دقت اندازه گيري شده و گراف هاي آن رسم مي شوند.
در کل دو نوع مشخص از اين نوع ويسکومتر ها مورد استفاده قرار مي گيرد که با نام هاي تجاري"Couetteو "Searle"شناخته مي شوند که اختلاف آنها در چرخش فنجاني و شاغولي است.دوران فنجاني در بسياري از موارد بر دوران شاغولي ارجحيت دارد زيرا در اين روش امکان کنترل جريان هاي گردابي بهتر صورت مي گيرد.اما در اين متد ثابت نگه داشتن دماي سيال تا حدي دشوار است.
ويسکومتر هاي استابينگر(Stabinger viscometer):
با تغيير ويسکومتر هاي نوع چرخشي(Couette rotational viscometer)و ساخت اين نوع ويسکومتر ها به دقت بسيار بالايي در اندازه گيري ويسکوزيته جنبشي سيال مي توان دست يافت.سيلندر داخلي ويسکومتر هاي استابينگر(Stabinger Viscometer) گود تر و نسبت به ويسکومتر هاي نوع قبلي سبکتر طراحي شده اند به همين دليل به آساني در داخل نمونه شناور مي گردند و به دليل نيروي گريز از مرکز دقيقا در بخش مرکزي قرار مي گيرند.اندازه گيري سرعت و گشتاور در اين نوع با اندازه گيري چرخش ميدان مغناطيسي و حرکات گردابي و بدون هيچگونه تماس مستقيمي صورت مي گيرد.که اين امر دقت فوق العاده 50pN.m و دامنه وسيع سنجش0.2 to 20,000 mPa·s را براي اين نمونه امکان پذير نموده است.
قابل ذکر است که اين نوع ويسکومتر براي اولين بار توسط Anton Paar GmbH در سال 2000 معرفي گرديد که اين ويسکومتر به افتخار دکتر استابينگر(Dr. Hans Stabinger.)به اين نام ناميده شد.
روش کار و شرح آزمایش:
برای بدست آوردن ویسکوزیته سینماتیک استون و الکل به شرح زیر عمل می کنیم:
1- بدلیل اینکه برای محاسبه ویسکوزیته سینماتیک با این روش ، نیاز به چگالی آب و سیال مورد نظر داریم بایستی چگالی این مواد(آب و نمونه) را بدست آوریم. بدین ترتیب با استفاده از پیکنومتر جرم حجم مشخصی از نمونه ها را بدست آورده و چگالی را بدست می آوریم که در قسمت محاسبات ذکر شده اند.
2- برای بدست آوردن زمان حرکت سیال درون ویسکومتر بین دو خط نشانه ، باید نمونه را بگونه ای در ویسکومتر بریزیم که تا نصف حباب پایینی پر گردد . حال با استفاده از شیلنگ نمونه را می مکیم . بطوریکه کمی بالاتر از خط نشانه قرار گیرد. حال با انگشت سر لوله می بندیم . تا سیال پایین نرود . کرنومتر را آماده کرده و سیال را آزاد می کنیم. فاصله ی زمانی بین دو خط نشانه را اندازه گیری کرده و با استفاده از محاسبات ویسکوزیته را بدست می آوریم.
این عمل را برای آب ،استون و الکل انجام می دهیم.
منابع و مآخذ:
British Standards Institute BS ISO/TR 3666:1998 Viscosity of water
British Standards Institute BS 188:1977 Methods for Determination of the viscosity of liquids
ASTM International (ASTM D7042)
http://www.pra.org.uk/viscosityoils/notes-units.htm
Retrieved from "http://en.wikipedia.org/wiki/Viscometer
Sara12
11-30-2010, 10:30 PM
عنوان : شناسايي انواع الكل ها
هدف:شناسايي انواع الكل ها توسط معرف لوكاس ،اكسايش الكل هاي نوع اول و دوم توسط معرف كرميك اسيد( جونز) ،انجام يك واكنش جانشيني نوكلئوفيلي بر اتانول
تئوري:
Jones oxidation
The Jones oxidation is a chemical reaction described as the chromic acid oxidation of primary and secondary alcohols to carboxylic acids and ketones, respectively. Jones reagent - a solution of chromium trioxide in concentrated sulfuric acid - is used as the oxidizing agent.
The Jones Reagent will also completely oxidize aldehydes to carboxylic acids.
The solvent acetone markedly affects the properties of the chromic acid. The oxidation is very rapid, quite exothermic, and the yields are typically high. The reagent rarely oxidizes unsaturated bonds.
The chromium residue is very toxic, and care must be taken to dispose of it properly.
الکل
در شیمی به هر ترکیب شیمیایی که یک گروهِ هیدروکسیل (-OH) متصل به کربن یک آلکیل داشتهباشد، الکل گویند. فرمول کلی یک الکل سادهٔ عیر حلقهای CnH2n+1 است. در شیمی الکلها در شمار گروه مهمی از ترکیبهای شیمیایی هستند و در واکنشهای گستردهای شرکت میکنند و بسیاری از ترکیبهای شیمیایی از آنها به دست میآیند، به طوری در کتاب شیمی آلی موریسن و بوید آمدهاست که اگر به شیمیدانی بگویند او را با ده ترکیب شیمیایی دریک جزیره تنها خواهند گذاشت الکل یکی از آنها خواهدبود.
به طور کلی، زمانی که نام الکل به تنهایی به کار میرود، معمولاً منظور اتانول است که همان الکل گرفتهشده از جو یا عرق یا همان مشروبات الکلی میباشد. اتانول مایعی بیرنگ و فرار وبا بویی بسیار تند است که از تخمیر شکرها به دست میآید. همچنین گاه به هر گونه نوشیدنی که الکل داشتهباشد، الکل میگویند. هزاران سال است که معمولاً الکل به عنوان یکی از عاملهای اعتیادآور به شمار میآید.
الکلهای دیگر بیشتر با صفتهای مشخصکنندهٔ ویژهٔ خود میآیند مانند الکل چوب (که همان متانول است) یا ایزوپروپیل الکل. پسوند «ول» نیز در پایان نام شیمیایی همهٔ الکلها میآید.
ساختار و دستهبندی
الکلها بسته به نوع کربن که به گروه OH- پیوند دارد، به سه دسته نوع اول ، نوع دوم یا نوع سوم طبقهبندی میشوند:
خواص فیزیکی الکلها
دمای جوش
الکلها در میان هیدروکربنهای هم وزن خود دمای جوش بالاتری دارند که آن را میتوان به پیوند هیدروژنی الکلها دانست که سبب میشود انرژی بیشتری برای شکستن پیوند بین مولکولی آنها نیاز باشد.
حلالیت
با توجه به این که پیوند بین الکلها مانند آب، پیوند هیدروژنی است به هر اندازهای در آب حل میشود. همچنین با توجه به این که الکلها از یک سو بخشی آلی داشته و از سوی دیگر گروه هیدروکسید دارند بسیاری از مواد آلی را نیز حل میکنند.
محلول ید در محلول آب و الکل را تنتورید میگویند و برای گندزدایی به کار میروند.
زهرآگینی
الکلها بیشتر بویی تند و زننده دارند و اتانول از دوران پیش از تاریخ به دلیلهای گوناگون بهداشتی، رژیمی، مذهبی و تفریحی به عنوان نوشیدنی الکلی به کار میرفتهاست. هرچند استفادهٔ کم و گهگاه الکل میتواند بیزیان باشد، اندازههای بیشتر آن سبب مستی شده و در مقدارهای بیشتر میتواند به اختلالات تنفسی و حتی مرگ نیز بینجامد.
الکلهای دیگر بیشتر از اتانول سمیتر هستند، که این نیز بیشتر به دلیل نیاز به زمان بیشتر برای تغییر در فرایند سوخت و ساز است و حتی گاه در فرآیندهای دگرگشت(متابولیسم) مادههایی سمی میسازند. برای نمونه متانول، که همان الکل چوب است، به وسیلهٔ آنزیمها در جگر اکسایش مییابد و مادهٔ سمی فرمالدهید تولید میکند که میتواند سبب کوری یا مرگ شود.
یکی از راههای کارا در پیشگیری از سمیت فرمالدهید، فراهم آوردن اتانول در کنار آن است چون آنزیمهای هیدروژنزدایی که از متانول فرمالدهید میدهند بر اتانول اثر بیشتری دارند، بدین گونه از پیوند و عمل بر روی متانول پیشگیری میکند. در این زمان متانول باقیمانده وقت دفع از راه کلیهها را پیدا کرده و فرمالدهید باقیمانده نیز به فرمیک اسیدتبدیل میشود.
نامگذاری
در نامگذاری الکلها به روش آیوپاک، تنها در آخر نام آلکان یک «ول» افزوده میشود و زمانی که نیاز ذکر شمارهٔ کربنی که عامل الکلی بر روی آن قرار دارد باشیم، عدد بین نام آلکان و پسوند «ول» قرار میگیرد. مانند «پروپان-1-ول» برای CH3CH2CH2OH و «پروپان-2-ول» برای CH3CH(OH)CH3.
روشهای فرآوری صنعتی الکلها
از میان روشهای صنعتی الکل میتوان راههای زیر را نام برد:
آبدارکردن آلکنهای بدست آمده از کراکینگ نفت.
فرایند السک از آلکنها ، مونوکسید کربن و هیدروژن.
تخمیر کربوهیدراتها.
علاوه بر این سه روش اصلی ، روشهای دیگری نیز با کاربرد محدود وجود دارند. بهعنوان مثال ، متانول از هیدروژندار کردن کاتالیزوری مونوکسید کربن بدست میآید. مخلوط هیدروژن و مونوکسید کربن با نسبت ضروری ، از واکنش آب با متان ، آلکانهای دیگر ، یا زغال سنگ در دمای بالا بدست میآید.
واکنشها
http://i44.tinypic.com/mcy9a8.jpg
هیدروژنزدایی
از راه هیدروژنزدایی الکلها میتوان اتر به دست آورد.
اکسایش
الکلهای نوع اول میتوانند در واکنشهای اکسایش تبدیل به آلدهید و پس از آن تبدیل به کربوکسیلیک اسید شوند هرچند که الکل های نوع دوم در واکنش های اکسایش تنها تبدیل به کتون میشوند ولی الکلهای نوع سوم در واکنشهای اکسایش شرکت نمیکنند.
الگو:ـ
الکلهای نوع اول میتوانند بدون واسطه نیز به روشهای زیر به کربوکسیلیک اسیدها تبدیل شوند:
با حضور پتاسیم پرمنگنات (KMnO4).
PDC در DMF.
اکسایش جونز
اکسایش هنس
روتنیوم تتراکسید (RuO4).
یک الکل با دو عامل مجاور میتواند در مجاورت سدیم پراکسید(NaIOsub>4) یا سرب تترااستات (Pb(OAc)4) پیوند کربنش گسستهشده و به دو کربوکسیلیک اسید تبدیل شود.
مواد لازم: سه الكل نوع اول و دوم و سوم ، اتانول ، معرف لوكاس و جونز ، اسيد سولفوريك، KBr ، آب مقطر
وسايل لازم: لوله آزمايش ، پي ست ، پيپت ، ارلن ، بشر ، در پوش،لوله رابط ، چراغ گازي، پوآر ، ترازوي ديجيتالي ، كرنومتر ، تشت آب ، جا لوله اي
روش آزمايش:
1- شناسايي انواع الكل ها توسط معرف لوكاس :
ابتدا در 3 لوله آزمايش از 3 نوع الكل هر كدام 1 ميلي ليتر مي ريزيم و سپس به هر كدام 5 ميلي ليتر محلول لوكاس اضافه مي كنيم و با تكان دادن لوله ها به هم مي زنيم :
مشاهدات : 1- الكل نوع سوم در مدت چند ثانيه كدر شد .
2-الكل نوع دوم در مدت چند دقيقه كدر شد.
3-الكل نوع اول واكنش نداد و همچنان تا آخر آزمايش شفاف ماند.
2- اكسايش الكل هاي نوع اول و دوم توسط معرف كرميك اسيد( جونز)
ابتدا در يك لوله آزمايش 1 ميلي ليتر استون و سپس 5/0 ميلي ليتر الكل مورد نظر و سپس 3 قطره معرف جونز كه نارنجي روشن مي باشد را به ترتيب اضافه مي كنيم و هم مي زنيم. در صورتي كه محلول به رنگ سبز يا آبي تغيير رنگ داد الكل مورد نظر ما نوع اول يا نوع دوم مي باشد.
3-انجام يك واكنش جانشيني نوكلئوفيلي بر اتانول:
طبق شكل در يك ارلن 5 ميلي ليتر اتانول و 2 ميلي ليتر اسيد سولفوريك غليظ اضاقه كرده و با ريختن آب بر روي بدنه ارلن خنك مي كنيم .حال حدود 1 گرم KBr جامد را بر روي محلول مي ريزيم و در پوش را مي گذاريم . و لوله ي رابط را در يك ارلن ديگر هدايت و گاز هاي حاصله را سرد مي كنيم .در ضمن براي تسريع واكنش ارلن اول را با حرارت ملايم گرم مي كنيم.
واكنش انجام شده :
C2H5OH + HBr = C2H5Br + H2O
شناسايي برمو اتان : 2 ميلي ليتر از محصول بدست آمده را در لوله آزمايش مي ريزيم و سپس 2 ميلي ليتر آب را اضافه مي كنيم . مشاهده مي شود كه برمو اتان در آب حل نمي گردد.
http://i42.tinypic.com/nyd3b7.jpg
موارد خطا :
اين آزمايش ها چون كيفي هستند خطاي زيادي مشاهده نمي شود . ولي كور رنگي فرد آزمايش كننده در اين آزمايش ها ايجاد خطا مي كند .
نتيجه گيري:
در اين آزمايش با طرز شناسايي انواع الكل ها و يك واكنش جانشيني نوكلئوفيلي بر اتانول آشنا شده و از نزديك مشاهده كرديم.
منابع و مآخذ:
ميعادگاه كيمياگران جوان
Sara12
11-30-2010, 10:31 PM
عنوان : طرز تهیه نیترو بنزن هدف: تهیه و سنتز نیترو بنزن از بنزن (واکنش جانشینی نوکلئوفیلی)
تئوري:
فرآیند تولید منو نیترو بنزن:
فرآیند تولید نیترو بنزن متشکل از مراحل ذیل می باشد:
ویژگی های فرآیند،نکات فنی و شرایط عملیاتی:
1- واحد نیتراسیون طرح حاضر بصورت فرآیند غیر مداوم و در مقیاس صنایع کوچک در نظر گرفته شده است . بنابراین نسبت هزینه نیروی انسانی به مواد اولیه، کسر کوچکی را تشکیل می دهد.عمده ترین کاربرد نیترو بنزن در تولید آنیلین می باشد و بخش اعظم نیترو بنزن تولید شده در ساخت صنایع رنگ و تهیه رنگ های نساجی (آزو ) بکار میرود.ضمن اینکه می توان به کاربرد های آن بعنوان حلال و نیز در نقش ماده اولیه شیمیایی لاستیک، فتو گرافی و دارویی اشاره نمود . همچنین نیترو بنزن در صنایع نظامی برای تری نیترو تولوئن TNT استفاده می شود.
2- تهیه اسید مخلوط: مقادیر صحیح وزنی از اسید سولفوریک 98 درصد و اسید نیتریک 98 درصد در حالیکه دما کنترل می شود به آرامی به یکدیگر افزوده می شوند.
3- واکنش بنزن و اسید مخلوط:با در نظر گرفتن منحنی روفیل دمای نیتراسیون ، مقادیر مورد نیاز از بنزن و اسید مخلوط وارد راکتور می شوند . که بعد از انجام واکنش ، اسید بجا مانده به دستگاه استخراج و نیترو بنزن حاصله MNB به مخزن جمع آوری محصول خام هدایت می شوند. مقدار مورد نیاز دیگر از بنزن به اسید به جا مانده در دستگاه استخراج ، اضافه می شود . و در دمای پایین هم زده می شود .متعاقب عمل استخراج ، اسید تصفیه شده به مخزن اولیه نگهداری اسید مخلوط بنزن و نیترو بنزن بدست آمده نیز جهت استفاده در راکتور واکنش هدایت می شوند.
http://i40.tinypic.com/2s9eqnk.jpg
لازم به ذکر است که بین بنزن و مخلوط اسیدی (56تا65 درصد وزنی اسید سولفوریک ، 20 تا 26 درصد وزنی اسید نیتریک و 15 تا 18 درصد آب) وارد راکتور نیتراسیون که از نوع لوله ای با جریان در هم می باشد می گردد. دمای راکتور حدود 60 تا 75 درجه سلسیوس و فشار حدود 1 اتمسفر و زمان فعل و انفعال حدود 15 دقیقه کنترل می شود . مخلوط خروجی از راکتور شامل نیترو بنزن ، مواد اولیه ترکیب نشده و مقداری ناخالصی به یک ظرف جدا کننده فرستاده می شود . فاز آبی پس از تغلیظ به راکتور بازگشت داده می شود و فاز آلی به برج شستشو با آب می رود . مخلوط خروجی از بالای این برج به برج تقطیر جهت جداسازی نیترو بنزن و آب فرستاده می شود .از پایین این برج نیترو بنزن با خلوص 3/99 درصد تولید و به بازار عرضه می شود .
4- شستشو منو نیترو بنزن خام ، سه بار با آب ، دو بار با آب قلیایی و سه بار یا بیشتر با آب شستشو داده می شود.
5- تقطیر: آب در خشک کن از منو نیترو بنزن خام جدا می شود و محصول نهایی در تانک ذخیره انباشته می شود.
مواد لازم: بنزن/ اسید نیتریک/ اسید سولفوریک/ آب و یخ
وسايل لازم: ارلن تخلیه/ لوله رابط/ قیف دکانتور/در پوش/بشر/ تشت /پی ست/ حمام بن ماری/ استوانه مدرج
روش آزمايش:
ابتدا مانند شکل دستگاه را سوار می کنیم . سپس درون ارلن تخلیه 10 میلی لیتر اسید سولفوریک ریخته و به تدریج اسید نیتریک را به آن می افزایم و ارلن را درون تشت آب و یخ قرار می دهیم تا گرمای تولید شده از بین برود.و یک لوله رابط نیز از لوله ی خروجی ارلن درون آب مقطر قرار می دهیم تا گازهای تولید شده در آب حل شوند.
نکته: بنزن یک ماده سمی می باشد و در هنگام آزمایش باید از دستکش و ماسک استفاده کرد. و آزمایش باید زیر هود انجام گیرد.
سپس درون قیف دکانتور 10 میلی لیتر بنزن می ریزیم و با یک درپوش سوراخدار به ارلن تخلیه متصل می کنیم. سپس درون تشت به آرامی بنزن را بر روی مخلوط اسیدی می ریزیم و همزمان با تکان دادن ارلن در آب ویخ دمای محیط را کاهش می دهیم . پس از تمام شدن بنزن ارلن را از آب و یخ خارج کرده و درون حمام بن ماری قرار می دهیم در دمای 60-75 درجه سانتیگراد و همچنان هم می زنیم.
پس از گذشت نیم ساعت و کامل شدن واکنش محتویات ارلن را به درون قیف دکانتور منتقل کرده و درون حلقه قرار می دهیم. تا دو فاز آبی و آلی تشکیل گردد.
حال با اضافه کردن 50 میلی لیتر آب مقطر و تکان دادن شدید قیف فاز آلی را شستشو می هیم تا اسید های اضافی در آب حل گشته و از نیترو بنزن جدا گردند.
حال دو فاز را توسط قیف دکانتور جدا می نماییم.
حجم نیترو بنزن بدست آمده را با استوانه مدرج اندازه می گیریم و راندمان را محاسبه می کنیم.
واکنش:
http://i44.tinypic.com/34t8sxh.jpg
محاسبات آزمایش:
حجم بنزن اولیه=ml
حجم نیترو بنزن بدست آمده=ml
رسم شکل :
http://i39.tinypic.com/23wwgad.jpg
منابع و مآخذ:
چکیده طرح های صنعتی زود بازده
ترجمه مطالب ارائه شده توسط مرک آلمان
Sara12
11-30-2010, 10:35 PM
عنوان: تیتراسیون های اكسایش كاهش (یدومتری)
مقدمه و تئوری:
یون یدید یک عامل کاهنده ی نسبتاً موثری است که به طور وسیعی برای تجزیه ی اکسنده ها به کار می رود.
به طور کلی به واکنش هایی که در آن ید اکسید می گردد، یعنی ید از محلول یدیدها آزاد می گردد یدومتری گویند. روشهای زیادی بر اساس خواص کاهندگی یون یدید استوارند. ید که محصول واکنش است، معمولاً با محلول استاندارد تیوسولفات تیتر می شود.
عناصر زیادی را می توان به روش یدمتری تعیین نمود. یکی از این عناصر، مس است. در این روش از واکنش زیر جهت احیا و رسوب دادن مس استفاده می کنند.
حال مقدار ید آزاد شده توسط محلول تیوسولفات تعیین میشود و از روی مقدار تیوسولفات مصرفی (با استفاده از روابط استوکیومتری) ، به مقدار واکنش دهنده ی اولیه ی مورد نظر (در اینجا یون مس) دست می یابند. واکنش ید با تیوسولفات به وسیله ی معادله ی زیر داده شده است:
نقطه ی پایانی تیتراسیون به سادگی توسط محلول نشاسته مشخص می شود. لحظه ی مناسب برای اضافه کردن شناساگر وقتی است که رنگ محلول از قهوه ای به زرد کمرنگ تغییر می کند. پایان تیتراسیون هنگامی است که محلول بیرنگ می شود.
همچنین یدومتری دقیقترین و قابل اعتمادترین روش اندازه گیری اکسیژن محلول در آب میباشد. این روش یک روش تیتراسیونی است که بر اساس خواص اکسیدکنندگی اکسیژن محلول انجام میگیرد. با افزایش به محلول قلیایی شده آب ، هیدروکسید منگنز با اکسیژن محلول آب ترکیب شده ، ایجاد میکند. با مصرف تمام اکسیژن موجود ، محلول اسیدی میشود. با افزودن یدید ، در محیط اسیدی با یون یدید ، وارد واکنش شده ، ید آزاد میکند. مقدار ید آزاد شده توسط محلول تیوسولفات تعیین میشود و از روی مقدار تیوسولفات مصرفی (با استفاده از شناساگر نشاسته) ، مقدار اکسیژن موجود در آب محاسبه میشود.
http://i44.tinypic.com/2ic2jxi.jpg
روش کار :
· مجهول را به حجم می رسانیم
· مقدار مشخصی از آن بر می داریم ( 25 cc )
· به آن اضافه می کنیم
· محلول را صاف کرده و رسوب را با 5cc آب شستشو می دهیم
· محلول را با تیوسولفات 0.1N تیتر می کنیم تا رنگ زرد کاهی نمایان شود
· 2ml چسب نشاسته 0.1% + 0.5gr KSCN را به آن اضافه می کنیم
· تیتراسیون را تا تغییر رنگ مجدد ادامه می دهیم
Sara12
11-30-2010, 10:37 PM
عنوان آزمايش : پرش هيدرو ليکي (Hydraulic Jump)
بررسي نظري مسئله ( تئوري مسئله)
به طوري که مي دانيم جريان در کانال هاي روباز مي تواند مادون بحراني و يا فوق بحراني باشد. در جريان مادون بحراني ، آشفتگي هاي ناشي از تغيير شيب بستر يا تغيير مقطع عرضي جريان ممکن است به بالا دست يا به پايين دست حرکت کنند و نتيجه آن تنظيم هموار جريان است. وقتي جريان در يک مقطع فوق بحراني است ، و شرايط پايين دست ايجاب مي کند که جريان به مادون بحراني تبديل شود ، اين نياز به تغيير نمي تواند به بالادست منتقل شود. از اين رو تغيير تدريجي با گذر هموار در نقطه بحراني امکان پذير نيست. گذر از جريان فوق بحراني به مادون بحراني از طريق پرش هيدروليکي به طور ناگهاني روي مي دهد. تغيير ناگهاني عمق ، افت انرﮊي مکانيکي قابل توجهي را بر اثر آميختگي متلاطم به وجود مي آورد. جنبه هاي کلي پرش هيدروليکي در شکل زير نشان داده شده است.
http://i42.tinypic.com/iqa6fr.jpg
با توجه به شکل براي نقطه ١ داريم:
عبارت سمت راست را انرﮊي مخصوص کانال در نقطه ١ مي نامند و آن را با نمايش مي دهند.
براي هر نقطه ديگري از کانال و با توجه به رابطه زير داريم:
که در رابطه بالا برابر با دبي در واحد عرض مي باشد که دبي دو بعدي نيز ناميده مي شود.
بنابراين براي دبي معلوم ، انرﮊي مخصوص ، تابعي از عمق جريان در کانال يعني است. تغيير عمق به صورت تابعي از انرﮊي مخصوص براي يک دبي مشخص در شکل زير نشان داده شده است.ژ
http://i42.tinypic.com/qs2gl2.jpg
وقتي باشد داريم ؛ اين حالت حدي با يک خط 45 درجه در روي نمودار نشان داده شده است. براي يک دبي مشخص و انرﮊي مخصوص داده شده ، دو عمق ممکن وجود دارد. اين دو عمق را عمق هاي متناوب مي نامند. منحني ثابت ، مکان هندسي تمام عمق هاي ممکن و انرﮊي هاي مخصوص متناظري را مي دهد که معادله بالا را برقرار مي کنند. با افزايش ، منحني رسم شده به سمت راست جابجا خواهد شد. براي هر منحني متناظر با يک دبي مشخص ، عمقي وجود دارد که را مي دهد. با ديفرانسيل گيري از معادله بالا ، عمق را مي توانيم بيابيم ؛ وقتي مينيمم است که با حل ، به دست مي آوريم :
جايگذاري اين نتيجه در معادله اصلي مي دهد :
بنابراين مکان هندسي مقادير يک خط راست با معادله است. با استفاده از روابط به دست آمده ، مي توانيم سرعت را در محاسبه کنيم:
از اين رو در مقدار ، و اين حالت متناظر است با جريان بحراني. عمق در را عمق بحراني ، ، مي نامند. از اين رو براي جريان در يک کانال مستطيلي :
http://i44.tinypic.com/2s16olf.jpg
با نوشتن عبارت عدد فرود ، رژيم جريان روي شاخه هاي منحني را در بالا و پايين عمق بحراني مي توانيم مطالعه کنيم. با استفاده از روابط به دست آمده و نيز با استفاده از رابطه پيوستگي داريم :
در شاخه بالائي منحني ، ، بنابراين ؛ و لذا جريان مادون بحراني است. در شاخه پاييني منحني ، ، بنابراين ؛ و لذا جريان فوق بحراني است. در نزديکي ، آهنگ تغيير با تقريباَ بي نهايت است. حتي تغييرات کوچک ، بر اثر بي نظمي ها يا آشفتگي هاي کانال ، ممکن است تغييرات قابل توجهي را در عمق سيال به وجود آورد. از اين رو ، امواج سطحي معمولا وقتي تشکيل مي شود که جريان نزديک به شرايط بحراني باشد. همان طور که در شکل بالا نشان داده شده است جريان قبل از دريچه کشوئي مادون بحراني و بعد از آن مافوق بحراني مي باشد. همين جريان مافوق بحراني قبل از پرش هيدروليکي وجود دارد و بعد از آن جريان دوباره مادون بحراني خواهد شد. بنابراين در دو قسمت از کانال جريان به صورت بحراني است. مي توان نشان داد که انرﮊي مخصوص براي جريان قبل و بعد از دريچه کشوئي تقريبا يکي است يعني اما تفاوت زيادي با انرﮊي مخصوص جريان بعد از پرش هيدروليکي دارد.
حجم کنترل نشان داده شده در شکل زير را براي نوشتن معادله مومنتوم بين دو نقطه ، قبل و بعد از دريچه در نظر مي گيريم :
که تابع مومنتوم در هر نقطه از جريان ناميده مي شود. برابر با نيرويي است که به دريچه وارد مي شود.
همان طور که در بالا نيز اشاره شد انرﮊي مخصوص قبل و بعد از دريچه تقريبا يکسان است. به طور مشابه مي توان نشان داد که مقدار تابع مومنتوم قبل و بعد از پرش هيدروليکي تقريبا با هم برابر است يعني اما اين مقدار با مقدار تابع مومنتوم قبل از دريچه ، تفاوت زيادي دارد.
از روابط بالا توان مصرف شده در حين پرش هيدروليکي را مي توان به دست آورد:
تغيير عمق به صورت تابعي از تابع مومنتوم براي يک دبي مشخص در شکل زير نشان داده شده است.
مقدار مينيمم در عمقي مانند رخ مي دهد که به راحتي مي توان آن را با مينيمم کردن بازاي به دست آورد ، خواهيم داشت:
مقدار غير صفر در واقع همان عمق بحراني است که در آن عدد فرود برابر با يک مي باشد. مشابه آنچه که در ارتباط با انرژي مخصوص گفتيم ، در اينجا نيز قسمتي از منحني که بالاتر از است مربوط به جريان مادون بحراني است ؛ و بخش پاييني منحني مربوط به جريان فوق بحراني است ؛ .
براي تعيين عمق پايين دست يا عمق ثانويه بر حسب شرايط بالادست پرش هيدروليکي ، با توجه به فرض داريم:
از رابطه پيوستگي داريم:
با جايگذاري اين عبارات در رابطه بالائي داريم:
با ضرب طرفين رابطه بالا در داريم:
با استفاده از فرمول درجه دوم ، را حل مي کنيم و ريشه مثبت را انتخاب مي کنيم ، زيرا بايد مثبت باشد. داريم:
به اين ترتيب ، نسبت عمق پايين دست به عمق بالادست در پرش هيدروليکي فقط تابعي از عدد فرود بالادست است .
به طور مشابه نسبت عمق بالادست به عمق پايين دست با استفاده از رابطه زير قابل محاسبه خواهد بود:
مطالعه تجربي
سکوي مطالعه:
در اين آزمايش جريان از زير دريچه کشوئي و پديده پرش هيدروليکي را مطالعه خواهيم کرد.
دستگاهي که در اين آزمايش از آن استفاده خواهيم کرد در شکل زير نشان داده شده است :
ابتدا با باز و بسته کردن شير پمپ ، ارتفاع آب در مخزن هد ثابت را تثبيت مي کنيم و صبر مي کنيم تا محل پرش هيدروليکي تثبيت گردد. سپس از طريق سوراخ هائي که در زير مخزن هد ثابت قرار دارند دبي آبي را که جريان دارد اندازه مي گيريم. تعداد اين سوراخ ها ده عدد مي باشد. براي اين کار از يک حجم معيار که برابر با است استفاده مي کنيم و زمان پر شدن اين حجم را براي يک سوراخ اندازه گرفته و دبي را از فرمول محاسبه مي کنيم. چنان که در شکل مي بينيم ، از توري براي گرفتن تلاطم جريان در حين ورود به مخزن هد ثابت استفاده مي کنيم. همچنين قبل از ورود جريان به داخل کانال موانعي از جنس شيشه و يا فلز در مقابل جريان قرار مي دهيم تا تلاطم جريان گرفته شود و جرياني آرام و با عدد فرود کمتر از يک در بالادست کانال داشته باشيم ( ). دبي عبوري از کانال را با استفاده از کشو تغيير مي دهيم به طوري که هر بار تعدادي از سوراخ ها را در مسير جريان قرار مي دهيم. اندکي صبر مي کنيم تا رﮊيم جريان در بالادست کانال آرام و تثبيت گردد. با استفاده از خط کش هائي که در روي کانال تعبيه شده اند ، ارتفاع آب بالاي کانال از ته کانال بعد از دريچه کشوئي و قبل از پرش هيدروليکي ، يعني و همچنين ارتفاع آب بالاي کانال از کف کانال بعد از پرش هيدروليکي ، يعني را اندازه مي گيريم.
همان طور که در شکل مي بينيم و در قسمت نظري مسئله نيز بدان اشاره گرديد ، در دو نقطه ١ و ٣ جريان مادون بحراني است و بنابراين اين دو نقطه بايد در شاخه بالائي منحني ها قرار گيرند و از آنجائيکه در نقطه ٢ جريان فوق بحراني است ، اين نقطه بايد در شاخه پاييني منحني ها قرار گيرد.
سپس نمودارهاي و را با استفاده از روابط زير که اثبات شان در قسمت تئوري مسئله آمده است ، رسم مي کنيم:
نمودار هاي رسم شده براي حالت ايده آل مي باشند. براي دبي هاي متفاوت به دست آمده ، دو عدد فرود و مربوط به هر دبي را محاسبه مي کنيم و سپس نقاط متناظر با و همچنين نقاط متناظر با مربوط به هر دبي را به روي نمودار متناظر رسم شده براي حالت ايده آل ، انتقال مي دهيم. نقاط به دست آمده ، داراي انحراف از حالت ايده آل خواهند بود. روش محاسبه عدد فرود به اين صورت است که در آن برابر با عرض کانال مي باشد ، محاسبه مي کنيم و از آنجا با استفاده از فرمول عدد فرود را به دست مي آوريم.
زمان پر شدن حجم معيار ليتري با استفاده از جريان آب يک سوراخ را اندازه مي گيريم و دبي را محاسبه مي نماييم.
مشخصات کانال : و فاصله کف کانال تا دريچه برابر با مي باشد.
نتيجه گيري
در اين آزمايش با پديده پرش هيدروليکي با استفاده از جريان زير دريچه کشوئي در کانال هاي روباز آشنا شديم. پرش هيدروليکي هنگامي رخ مي دهد که در جريان فوق بحراني يک مانع يا تغيير سريعي در سطح مقطع داشته باشيم. در حين اين پديده انرﮊي سيال به مقدار قابل توجهي کاهش مي يابد. وقتي پرش هيدروليکي رخ مي دهد ، جريان از يک جريان فوق بحراني به يک جريان مادون بحراني با عمق بيشتر تبديل مي شود و لذا پديده پرش هيدروليکي بسيار شبيه به يک موج ضربه اي قائم است. از پرش هيدروليکي اغلب براي هدر دادن انرﮊي جريانِ زير سرريز ها و دريچه ها به عنوان وسيله اي براي جلوگيري از فرسايش کف يا جوانب کانال هاي مصنوعي و يا طبيعي استفاده مي شود. در کانالهاي روباز عدد بي بعد فرود ، در اثر عوامل مختلفي مثل گذر از زير دريچه کشوئي و پرش هيدروليکي تغيير مي کند. اين عدد براي کانالهاي روباز همانند عدد بي بعد رينولدز براي جريان در لوله ها ست و براي تشخيص رﮊيم جريان در کانالها به کار مي رود. آنجا که عدد فرود کمتر از يک باشد ، مانند بالا دست جريان در کانال روباز قبل از دريچه و همچنين جريان بعد از پرش هيدروليکي ، رﮊيم جريان ، آرام و مادون بحراني و آنجا که اين عدد بزرگتر از يک باشد ، مانند جريان بعد از دريچه و قبل از پرش هيدروليکي ، رﮊيم جريان ، سريع يا فوق بحراني مي باشد. بنابراين دو بار عدد فرود برابر با يک يعني بحراني خواهد شد. در کانال هاي روباز دو کميت انرﮊي مخصوص و تابع مومنتوم تعريف مي شود. اين دو کميت ، تابع دبي و عمق جريان مي باشند. براي يک دبي مشخص و ثابت اين دو کميت فقط تابع عمق جريان در کانال خواهند بود که نمودار هاي عمق جريان بر حسب اين دو کميت ، حاوي اطلاعات مفيدي در ارتباط با عدد فرود جريان در نقاط مختلف کانال مي باشند. در نقاطي که در شاخه بالائي منحني قرار دارند ، عدد فرود کمتر از يک و جريان مادون بحراني است و در نقاطي که در شاخه پاييني منحني قرار دارند عدد فرود بزرگتر از يک و جريان فوق بحراني مي باشد. نسبت عمق جريان در بالا دست پرش هيدروليکي به پايين دست ، تابعي از عدد فرود پايين دست و نسبت عمق جريان در پايين دست پرش هيدروليکي به بالادست ، تابعي از عدد فرود بالادست جريان مي باشد. بر اساس اعداد فرود به دست آمده ، عمق جريان در کانال هاي روباز طراحي مي شود. نمودار هاي اين دو نسبت عمق بر حسب عدد فرود به دو صورت تئوري و واقعي رسم مي شوند که نمودار واقعي از حالت ايده آل انحراف دارد. اين انحراف به علت وجود خطا در ابزارهاي انجام آزمايش و نيز خطا هاي اندازه گيري مي باشد. از منابع اين خطا مي توان به وجود هوا در داخل لوله ها ، سفت نبودن اتصالات و نشت دبي به خارج از مسير جريان در کانال ، ولتاژ متناوب پمپ ، خطاي اندازه گيري زمان و ارتفاع آب و نيز گرفته نشدن کاملِ تلاطم آبي که در مخازن و بالادست کانال جريان دارد ، اشاره کرد.
Sara12
11-30-2010, 10:38 PM
عنوان: سینتیک شیمیایی واکنش ید با استون
هدف آزمایش:
1- اندازه گیری سرعت واکنش بین ید و استون
http://i42.tinypic.com/s6m0av.jpg
2- بررسی بعضی از عوامل مؤثر بر سرعت واکنشهای شیمیایی مانند : غلظت و کاتالیزور
تئوری :
سرعت واکنش؟
کمیتی مثبت است که میزان تغییر غلظت یکی از واکنش دهنده ها یا محصول واکنش را نسبت به واحد زمان (ثانیه، دقیقه، ساعت و ... ) نشان می دهد.
عوامل مؤثر بر سرعت واکنش:
1- نوع واکنش دهنده
2- غلظت واکنش دهنده ( با افزایش غلظت، سرعت افزایش می یابد )
3- دما (افزایش دما باعث افزایش سرعت می شود ،گاهی با افزایش 10 درجه، سرعت 2 تا 3 برابر می شود ) – دما روی k تاثیر دارد >> روی سرعت هم تاثیر می گذارد.
K= ثابت سرعت ؛ A= فاکتور فرکانس؛ = انرژی فعالسازی
R= ثابت جهانی گازها؛ T= دما ( کلوین )
4-کاتالیزور ( در وجود کاتالیزور واکنش با سرعت بیشتری انجام می گیرد )
5- و ...
مثالهایی از واکنش های فوق سریع :
تشکیل رسوب نقره کلرید به هنگام مخلوط شدن محلولهای حاوی یون های کلرید و نقره
تشکیل آب به محض مخلوط شدن محلول های اسید و باز
در معادله ی شماره ی (3) و نشانه ی غلظت مولی واکنش دهنده های A و B است.
K ثابت سرعت واکنش (rate constant ) نامیده می شود.
m و n مرتبه ی واکنش نسبت به واکنش دهنده های A و B است.
انرژی فعالسازی واکنش :
حداقل انرژی لازم برای فراهم کردن کمترین تحرک واکنش دهنده ها در شروع واکنش است. رابطه ی بین K ( ثابت سرعت ) ، ( انرژی فعالسازی ) و T ( دما به درجه ی کلوین ):
اگر R ( ثابت گازها ) را برابر 8.314 J/mol.k در معادله ی (4) قرار دهیم، بر حسب J/mol محاسبه خواهد شد. در عمل با اندازه گیری k یک واکنش در دماهای مختلف می توان آن واکنش را از روی منحنی به دست آورد.
در این آزمایش سرعت واکنش بین ید و استون ( واکنش 1 ) را اندازه گیری می کنیم. سرعت این واکنش علاوه بر غلظت ید و استون به غلظت یون هیدروژن نیز بستگی دارد. بر طبق معادله ی (3) رابطه ی سرعت برای این واکنش عبارت است از :
m و n و p مرتبه ی واکنش نسبت به استون، ید و یون هیدروژن است.
مرتبه ی کل واکنش = m + n + p
سرعت این واکنش از تغییرات غلظت به مدت زمان تغییر غلظت به دست می آید.
اگر t زمان لازم باشد تا رنگ محلول مربوط به غلظت اولیه ناپدید شود، سرعت واکنش با استفاده از معادله ی (6) برابر خواهد شد با :
غلظت اولیه ی ید است.
می توان سرعت واکنش را با تغییر دادن غلظت موارد اولیه تغییر داد.
برای مثال اگر غلظت اولیه ی استون را نسبت به مخلوط شماره ی (I) دو برابر کنیم، اما غلظت ید و را ثابت نگهداریم، معادله ی سرعت برای مخلوط شماره ی (II) تغییر خواهد کرد. معادله ی ( 8 ب ) معادله ی سرعت را برای مخلوط شماره ی (II) نشان می دهد :
تاثیر سرعت روی غلظت با استفاده از روابط ریاضی:
از تقسیم دو رابطه ی (8) بر یکدیگر می توان m ( مرتبه ی واکنش نسبت به استون ) را بدست آورد :
با اندازه گیری سرعت واکنش در مخلوط های (I) و (II) می توان نسبت سرعت ها را که مساوی است پیدا کنیم. سپس معادله را برای محاسبه ی m از طریق لگاریتم حل می کنیم. اگر نسبت عددی را برابر Y فرض کنیم، جواب آن بدین شکل است :
به روش مشابه نیز می توانیم مرتبه ی واکنش را نسبت به غلظت یون و تعیین کنیم. سپس با داشتن مرتبه ی هر واکنش دهنده، غلظت آنها و سرعت واکنش و K را بدست آوریم.
وسایل :
بشر، 1 عدد ارلن مایر 125 ml ، کرنومتر، 1 عدد استوانه ی مدرج 10 ml ،
مواد:
50 ml محلول HCL 0.2 M
50 ml محلول
50 ml محلول
50 ml آب مقطر
روش کار:
مانند جدول زیر، درون 4 ارلن جداگانه مخلوط های زیر را تهیه می کنیم و طبق دستوری که پس از جدول خواهد آمد مقدار معین شده ی ید در جدول را به آن می افزاییم؛
http://i43.tinypic.com/10729nb.jpg
ابتدا درون هر ارلن مقدار معین شده ی استون و HCL و آب را می ریزیم و بخوبی تکان می دهیم تا با هم مخلوط شوند. مقدار تعیین شده ی ید را برای هم ارلن با مزور اندازه گیری کرده و وقتی آمادگی برای اندازه گیری زمان واکنش پیدا کردیم محلول ید را به مخلوط درون ارلن اضافه میکنیم و سریعاً کرنومتر را روشن می کنیم. ارلن را به سرعت می چرخانیم تا جائیکه رنگ زرد مخلوط که ناشی از افزودن ید است کاملاً از بین برود. در اینجا زمان را متوقف کرده و عدد حاصل را t می نامیم.
برای هر 4 مخلوط این عمل را انجام میدهیم و زمان هر یک را یه صورت نشان می دهیم.
برای به دست آوردن سرعت واکنش باید در فرمول مربوطه، غلظت اولیه ی ید را وارد کنیم . پس نیاز به محاسبه ی آن وجود دارد :
برای مثال غلظت اولیه ی ید برای مخلوط های I و II وIV که با نشان داده می شود به صورت زیر بدست می آید.
با استفاده از فرمول سرعت هر 4 واکنش را بدست می آوریم و در نتیجه جدولی به صورت زیر حاصل خواهد آمد :
http://i44.tinypic.com/14t96hf.jpg
با فرمولی که قبلاً گفته شد ، می توان غلظت اولیه ی هر کدام از مواد موجود در واکنش را اندازه گیری کرد :
داده های بالا را به صورت جدولی مرتب می کنیم:
http://i42.tinypic.com/15ho180.jpg
با استفاده از معادله ی (5) ثابت سرعت واکنش را در هر مخلوط می یابیم
Sara12
11-30-2010, 10:39 PM
عنوان: برج خنک کننده
چکیده :
وقتی مایع گرمی باگازاشباع نشده ای تماس می یابد،قسمتی از مایع تبخیر می شود و دمای مایع افت می کند.مهمترین کاربرد این اصل در سیستمهای خنک کن است که بر مبنای آن دمای آب مصرفی در چگالنده ها و مبدل های گرمایی کاهش می یابد. از جمله مصارف این دستگاه ها در صنایع شیمیایی،نیروگاهها و وسایل تهویه مطبوع می باشد.
انواع سیستم های خنک کننده :
در تمام سیستم های خنک کننده، گرما به آب خنک کن منتقل می شود و دمای سطح فلزات در محدوده ای از زیر صفر ( برای صنایع یخچال سازی ) تا بالای °c100 ( موتور های احتراق داخلی ) متغییر است.در سیستم های گردشی، آب در نقطه ای گرم شده و در جای دیگر خنک می شود. میزان خنک شدن بسته به نوع سیستم و فرآیند متغییر است. سیستم خنک کننده به3 گروه اصلی زیر تقسیم بندی می شوند.
الف) سیستم های گردشی بسته
ب) سیستم های گردشی باز با برج های خنک کننده
پ) سیستم های خنک کن گزار
الف) سیستم های خنک کن بسته :
در سیستم چرخشی کاملاً بسته ،آب خنک کن از میان سیستم عبور کرده بدون اینکه هیچ گونه آبی تلف شود به مخزن اصلی بر می گردد. بنابراین انتخاب باز دارنده مناسب و غلظت آن بدون هیچ گونه محدودیت محیطی انجام می شود.
ب) سیستم های خنک کننده باز گردشی :
سیستم های خنک کننده باز از متداول ترین سیستم های خنک کن می باشند. در این سیستم در هر سیکل گردش، 2 تا 3 درصد آب تبخیر می شود. بنابراین غلظت نمک ها باید در یک سطح معقولی حفظ شوند. برای این کار مقداری از آب تغلیظ شده را از سیستم خارج و آب تازه را جایگزین آن می کنند. از طرفی مواد شیمیایی استفاده شده در این سیستم ها به رودخانه ها و دریاچه ها ریخته می شود. لذا ضروری است که مواد شیمیائی مصرفی با محیط زیست سازگاری داشته باشد.
- سیستم های خنک کن گذرا :
در سیستم خنک کننده گذرا آب از داخل رودخانه، دریا و ... به داخل سیستم فرستاده شده ویک بار از داخل واحدهای خنک کننده عبور می کند و به منبع اصلی خود برگشت داده می شود، بنابراین مصرف آب در این سیستم ها خیلی زیاد است. استفاده کردن مداوم از مواد شیمیایی از نظر اقتصادی محدود می باشد. ضمن آن که ملاحظات زیست محیطی نیز باید رعایت شود.
آشنایی با برجهای خنک کننده : برجهای خنک کن ستونهایی با قطر بزرگ اند واز پرکن هایی استفاده می کنند که تماس خوبی بین گاز ومایع به واسطه افت فشار کم برقرار کنند.
http://www.engineeringtoolbox.com/docs/documents/699/cooling_tower.png
آب گرم توسط نازلهایی به داخل دستگاه پاشیده میشود یاتوسط شبکه ای از لوله ها وناودانهای شیردار روی پرکن توزیع می شود.جدار داخلی برج بیشتر از چوب قرمز،سیمان آسبست،پلی استر تقویت شده با شیشه ونظایر آنها ساخته میشود. البته برجهایی وجود دارند که کاملا از پلاستیک ساخته شده اند.فضای پر شده ی داخلی معمولا به شکل پرچین درست میشود به این ترتیب که تخته های باریکی را یک در میان به صورت ردیفهای افقی وعمودی قرار می دهند.
پرکنها معمولا از نوع پلی پروپیلن می باشند که به شکل میله ویااشکال دیگرقالب ریزی میشوند.
پرکن در تاسیسات جدید،پرکن سلولی یا پرکن فیلمی است که از صفحات کنگره ای پلاستیکی تشکیل شده است.عمق پرکن می تواند کسر اندکی از ارتفاع کل برج باشد. هوا توسط فن ها با کشش واداشته یا با کشش القایی،ودر بعضی برجها با کشش طبیعی ،از پرکن عبور می کند.
کاهش دمای آب دربرج خنک کن عمدتاًازتبخیرناشی می شود٬گرچه وقتی دمای هواکم است ،کمی گرمای محسوس به هواانتقال می یابد.ولی ٬ حتی وقتی هواگرم ترازآب است ،آب راباتبخیرمی توان خنک کردبه شرطی که دمای حباب خیس کم ترازدمای آب باشد.درعمل ٬دمای آب خروجی 5تا F˚15(3 تا C˚8)بیشترازدمای حباب خیس است ،واین اختلاف راتقرب می گویند.تغییردمای آب ازورود تا خروج را برد گویند ٬ و برد معمولا از 10تا F˚30(6تاC˚17 ) است.
انواع اصلی برجهای خنک کن عبارتند از ׃
1_برج های خنک کن با جریان عرضی
2_برجهای خنک کنبا جریان ناهمسو
3_برج های خنک کن پاششی
برج خنک کن باجریان عرضی : در این برج ها که دارای مقطع عرضی مستطیلی هستند،هوا به طور افقی از بسترهای مایل پرکن عبور میکند وآب به طرف پائین جریان می یابد.دریچه های مایل از فرار قطره های آب به خارج جلوگیری می کنند ودیواره های زاویه دار،که به آنها کشش گیر می گویند بیشتر قطره هایی راکه همراه با هوای خروجی برده می شوند، گیر می اندازند .
برج های خنک کن با جریان ناهمسو: در این برجها هوا در زیر لایه ای از پر کن وارد می شود و در جهت مخالف با جریان سقوطی آب به طرف بالا جریان می یابد.این وضعیت برای انتقال گرما موثرترین آرایش استو تقرب دمائی بهتری را ایجاد می کند.
برج های خنک کن پاششی
برجهای پاششی افقی می باشندوازآنهابیشتردرعملیات سردکردن بوسیله مرطوب سازی بصورت آدیاباتیک بااستفاده ازمایع درگردش استفاده می شود.اگرقطرات مایع درشت باشد،شدت جریان گازرامی توان به 8/0تا2/1کیلوگرم برمترمربع ثانیه (600تا900پاوندبرفوت مربع ساعت )نیزرسانیدولی درهرحال بایدازخروج مایع توسط گازجلوگیری شود.
شرح آزمایش :
دستگاه راروشن می کنیم وبااستفاده ازشیرتنظیم دبی را روي40وسپس روي 60 قرار داده و دماهای ورودی وخروجی راثبت می نماییم.می دانیم که آب ازطریق بالای برج واردسیستم می شودپس دمای آب گرم ورودی(5T)ودمای آب سرد خروجی(6T)رابااستفاده ازترمومتراندازه گیری میکنیم.هوای خشک پس ازورودبه واسطه قطرات آب درحال ریزش مرطوب می شودوازخنک کن خارج می گردد.دمای هوای مرطوب ورودی (1T)ودمای هوای مرطوب خروجی(3T)می باشند.همچنین دمای هوای خشک ورودی (2T)ودمای هوای خشک خروجی (4T)خواهدبود.
T119.618.12
T2 26 27.9
T326.432.4
T433.738.2
T544.741.8
T630.334.4
نتیجه گیری :
هدف ازبه کاربردن خنک کن کاهش دمای سیال ورودی می باشد.باافزایش دبی جریان آب ورودی دمای هوای مرطوب خروجی افزایش می یابد.بااین وجوددمای سیال خروجی نیزافزایش یافته بازده سیستم کاهش می یابد.پس بایددبی جریان ورودی رابراساس دمای سیال خروجی ازخنک کن تنظیم نمود.
Sara12
11-30-2010, 10:41 PM
عنوان : تهيه پارانيترو استانيليد هدف: طرز تهيه پارا نيترواستانيليداز طريق نيتره كردن استانيليد
تئوری:
از طريق نيتراسيون كنترل شده مي توان پارا نيترو استانيليد تهيه كرد
http://i44.tinypic.com/20zwx3k.jpg
روش كار:
در يك بشر 100 سي سي 8 گرم استانيليد + 8 ميلي ليتر استيك اسيد گلاسيال + 16
ميلي ليتر سولفوريك اسيد غليظ در حال هم زدن اضافه كنيد.
بشر را در يك حمام يخ سرد كنيد و درجه حرارت را به حدود 5 درجه سانتيگراد برسانيد .
محلولي از 4 ميلي ليتر سولفوريك اسيد غليظ و 4 ميلي ليتر نيتريك اسيد غليظ
در يك لوله آزمايش تهيه كرده ودر حمام يخ سرد كنيد.
مخلوط نيتره كننده را به محلول استانيليد ، قطره قطرهع و همراه با هم زدن اضافه
كنيد . بطوريكه دما از 10 درجه بالاتر نرود .
پس از مرحله 4 بشر را در دماي آزمايشگاه به مدت 20 دقيقه بگذاريد.
محتويات را به يك بشر حاوي 100 ميلي ليتر آب و 50 گرم يخ اضافه كنيد.
رسوب حاصل را صاف و با اتانل 95 درصد كريستاليزه كنيد .
خصوصيات فيزيكي :
Reactants and Products
MW (g/mol)
Amounts
Wt./MW = mol
Density (g/mL)
Mp or Bp (°C)
Acetanilide
135.17g/mol
0.5g
0.004 mols
-----------
Mp= 113-115°C
Nitric acid
63.01
0.5mL
(0.6915g)
0.012 mols
1.383g/mL
Mp = -42
Bp = 121
Sulfuric acid
98.08g/mol
1.6mL
(2.944g)
0.030 mols
1.84g/mL
Mp = 3
Bp = 280
nitroacetanilide
180.16g/mol
0.23g
0.0013 mols
-----------
Mps: Ortho = 94°C
Meta = 155°C
Para = 214-217°C
Ethanol, 95%
46.07g/mol
10mL
(7.89g)
0.171 mols
0.789g/mL
Bp = 78°C
چرا پارا نیترو استانیلید در محلول های اسیدی حل می شود؟
C6H5-NH(C=O)CH3 استانیلید می باشد که در آن گروه NHCOCH3 بر روی حلقه ی آروماتیکی وجود دارد. حال چنانچه بخواهیم یک گروه دیگر بر روی حلقه قرار دهیم، این گروه می تواند موقعیتهای ارتو، متا و پارا را اشغال نماید. یعنی گروه جدید همسایه ی گروه قبلی باشد (ارتو) و یا یک کربن از آن فاصله داشته باشد(متا) و یا دو کربن فاصله داشته باشد و در دورترین فاصله ی ممکن قرار گیرد (پارا).
ساختار و خواص استانیلید را می توانید در سایت زیر ببینید:
http://en.wikipedia.org/wiki/Acetanilide
استانیلید دارای نقطه ذوب 113 تا 115 درجه ی سانتیگراد و نقطه جوش 304 درجه ی سانتیگراد می باشد.
ارتو و پارا نیترواستانیلید بوسیله ی واکنش استانیلید با مخلوطی از نیتریک اسید و سولفوریک اسید بدست می آید. زیرا گروه نخست یعنی NHCOCH3 گروه حجیمی است، فرم پارا که در آن دو گروه فوق و نیترو از هم فاصله ی بیشتری دارند، پایدارتر بوده و قسمت بیشتر محصول را به خود اختصاص می دهد. اما جدا کردن ایزومرهای پارا و ارتو از طریق تقطیر جز به جز ممکن است، زیرا ابن دو ترکیب در نقطه ی جوش متفاوت هستند.
اما دلیل حل شدن، به طور کلی یا حل شدن بر اساس شبیه در شبیه است یعنی مواد مشابه در حلالهای مشابه از نظر میزان قطبی حل می شود
و یا اینکه حل شونده و حلال بتوانند با هم برهمکنشی داده و پیوندی برقرار نمایند مانند حل شدن برخی مواد مانند شکر در آب به دلیل توانایی برقراری پیوند هیدروژنی
در مورد مولکول فوق همانطور که گفته شد به دلیل اینکه در نوع پارا ، ممانعت فضایی کمی در مولکول حاکم است، پایداری بیشتری وجود دارد و چون دو گروه به اندازه کافی از هم فاصله دارند، نیتروژن می تواند با هیدروژن اسیدی پیوند داتیو برقرار نماید و به دلیل تراکم الکترون در برخی قسمتها ، مولکول قطبی بوده می تواند در محلولهای اسیدی که انها هم به نوعی قطبی هیتند حل شوند.
خطای آزمایش:
چون این واکنش گرمازا است، باید افزایش استانیلید به اسید نیتریک غلیظ بسیار آهسته و همراه با سردکردن محیط واکنش صورت گیرد.
نتیجه گیری:
در پارا نیترو استانیلید، پیوندهای هیدروژنی درون مولکول و بین دو گروه عاملی برقرار می شود ولی در ایزومر ارتو، پیوندهای هیدروژنی بین مولکولهای مجاور و نه در یک مولکول برقرار می شود.
هنگام تولید نیترو استانیلید فرم پارا که در آن دو گروه فوق و نیترو از هم فاصله ی بیشتری دارند، پایدارتر بوده و قسمت بیشتر محصول را به خود اختصاص می دهد. در این گروه به دلیل فاصله ای که گروههای عاملی دارند، ازدحام فضایی کمتر بوده و مولکول بزرگتر می شود، درنتیجه نیروهای بین مولکولی نیز قویتر شده و مولکول به صورت جامد در می آید.
Sara12
11-30-2010, 10:42 PM
عنوان آزمايش : تهيه دي بنزال استون
هدف از آزمايش: آشنايي با تهيه دي بنزال استون
مواد لازم: آب، سديم هيدروكسيد ، اتانول، استون ، اتيل استات بنزالدهيد.
وسايل لازم: ارلن ماير،استوانه مدرج، بشر ،قیف بوخنر ،كاغذ صافي.
تئوری:
اگر مخلوط آلدئیدها و یا کتونهای متفاوت و یا هر دوی آنها در محیط حضور داشته باشند، منجر به تولید محصولات تراکمی متنوع میشود. در مورد کتونهای دارای دو گروه متیلن یا در حالت خاص دو گروه متیل مثل استون اگر نسبت مولی بنزآلدئید به استون به صورت 2 به 1 باشد دی بنزال استون به جای بنزال استون تشکیل میشود.
مکانیسم:
http://miadsoft.persiangig.com/document/miadsoft/aseto.bmp
برای مشاهده اندازه اصلی عکس کلیک کنید (http://miadsoft.persiangig.com/document/miadsoft/aseto.bmp).
روش كار:
1 گرم سديم را با 5 ميلي ليتر آب در يك ارلن ماير 250 ميلي ليتر بريزيد و تكان دهيد تا حل شود. 5 ميلي ليتر اتانول به مخلوط اضافه كنيد و ارلن را بچرخانيد و بگذاريد به دماي معمولي برسد سپس 0.72 میلی لیتر استون و متقاعب آن 2.1 ميلي ليتر بنزالدهید به محتواي ارلن ماير اضافه كنبد رنگ محلول به سرعت به زرد تا نارنجي تغيير مي كند (رنگ به خلوص بنزالدهيد بستگي دارد) مخلوط گرم ميشود و تقريبا بي درنگ رسوب زرد رنگ حاصل ميشود.
بگذاريد مخلوط به مدت 15 دقيقه به حال خود بماند و در طول اين مدت ارلن را بچرخانيد سپس مخلوط را روي قيف بوخنر صاف كنيد محصول را كه به كمي الكل سرد بشوييد و بگذاريد خشك شود سپس تودهي رسوب زرد رنگ را با حداقل مقدار اتيل استات متبلور كنيد بعد از فرايند تبلور بلور هاي زرد رنگي حاصل مي شود كه دماي ذوب آن 112 است.
محاسبات:
استون
d=m/v 0.79=m/0.79 m=0.57
بنز آلدهید
d=m/v 1.05=m/2.1 m=2.2
بنزآلدهید __ استون
gr/mol 106 gr/mol58*2
gr 52/0 gr x= 57/0
محدود کننده: استون
محصول ___ استون
gr/mol 204 gr/mol 57*2
تئوری gr 002/1 gr57/0
53%= 100 * 0.54/1.002 100 * تئوری/ عملیRa=
خطای آزمایش:
بعد از اضافه کردن اتانول و قبل از اضافه کردن استون و بنزآلدهید برای جلوگیری از واکنشهای جانبی و کانیزار اجازه دهید تا دمای ظرف به دمای اتاق(آزمایشگاه) برسد.
نتیجه گیری:
در این آزمایش از بنزآلدهید به عنوان الکترون دوست و از استون به عنوان هسته دوست استفاده می شود.
Sara12
11-30-2010, 10:43 PM
مقدمه تئوری :
خشککن دوار شامل یک استوانهای است که در جهت مناسب میچرخد و به طور معمول با افق زاویة کمی دارد.
طول استوانه 4 تا بیش از 10 برابر قطرش میباشد که ممکن است از 3/0 تا 3 متر تغییر کند. مواد جامد تغذیه شده به انتهای هر سیلندر وارد میشود و به واسطة سه خاصیت چرخشی، اختلاف ارتفاع و شیب استوانه، محصول تمام شده از قسمت دیگر تغذیه میکنند.
خشکنهای دوار به سه گروه تقسیم میشوند: 1) مستقیم 2) غیرمستقیم، مستقیم
3) غیرمستقیم
روش مستقیم روشی است که وقتی تبادل مستقیم حرارت بین جریان مواد جامد صورت میگیرد موچب افزایش یا کاهش دمای جامدات میشود و روش غیرمستقیم روشی است که گرمای ملایم جدا شده از برخورد فیزیکی مواد جامد با دیوار یا لوله فلزی باشد.
خشککن دوار:یکی از مهمترین خشککنهایی است که برای خشک کردن مواد جامد گرانول که میتوانند جریان آزاد داشته باشند و در اثر پاشیدن و به هم خوردن عمل خرد شدن قابل ملاحظهای صورت نگیرد.
اگر خشک کن دوار مجهز به دستگاه مخصوصی که کیکهای جامد را میشکنند باشند، میتوانند مواد خیلی چسبنده را هم به خوبی خشک کنند. در مورد خشک کردن مایعات غلیظ، مواد گلی شکل، مواد خیلی چسبنده و صمغی و موادی که به کندی خشک میشوند مناسب نمیباشند به علاوه مواد گوگردی و یا مواد سبکی که به راحتی توسط جریان هوا حمل میشوند. خشککنهای دوار برای خشککردن کودهای شیمیایی از قبیل سولفات، فسفات، و نیترات آلونیوم و نمکهای پتاسیم، همچنین موادی مانند مواد معدنی، شن، سنگ آهک، خاک رس ....
زمان خشک شدن در این خشک کنها معمولاً بین 5 دقیقه تا 1 ساعت و ظرفیت آنها بین چند صد کیلوگرم تا چند صدتن تغییر میکند.
ساختمان شماتیک یک خشککن دوار:
یک خشککن دوار شامل یک پوسته استوانهای چرخنده به صورت افقی و با کمی شیب به سمت قسمت خروجی خوراک میباشد. خوراک مرطوب از یک انتهای استوانه وارد و از انتهای دیگر محصول خشک شده خارج میشود، هنگامیکه استوانه میچرخد پردههای بالا برنده مواد جامد را بالا میبرند و به داخل هوای داغ در حال جریان میپاشند و درنتیجه سطح مواد جامد به طور کامل در معرض هوای داغ قرار گرفته و عمل خشک شدن به طور مؤثرتری انجام میگیرد. در محل ورود خوراک چند پره مارپیچی قرار دارد که به جلو راندن خوراک کمک میکند تا به پردههای اصلی برسد.
در محیطهای مرطوب لازم است که هوای خنک ورودی تا حدی رطوبت زدایی شود که این کار را میتوان توسط برج جذب و درمجاورت کلسیم کلراید انجام داد. دستگاههای فرعی این خشک کن عبارتند از: گرم کن هوا با شعله مستقیم و یا غیرمستقیم، کانال تنظیم کردن مقدار هوا، دستگاه جمعآوری غبارات و فنها، همچنین یک سیستم نوار نقاله برای انتقال ذرات ورودی و خروجی در بعضی موارد به یک سیستم اتوماتیک چکشی نیاز است تا موادی را که روی بالا برنده به صورت کیک قرار میگیرند خرد کند.
http://www.karasanat.com/files/97084557rot3.gif
تئوری خشککنهای دوار:
اگر انتقال حرارت مستقیماً از فاز گاز به فاز جامد صورت گیرد آن را از نوع حرارت مستقیم و اگر انتقال حرارت از لولههای بخار به مواد جامد انجام گیرد آنرا از نوع حرارت غیرمستقیم گویند. در صورتی که جهت جریان فاز گاز و فاز جامد هم جهت لاشند آنرا فواری واگر مخالف جهت هم باشند آنرامتقابل گویند. براین اساس خشککنهای دوار به چهار گروه زیر تقسیم میشوند.
حرارت مستقیم، جریان متقابل:
برای موادی که باید تا دمای بالاتر گرم شوند مانند مواد معدنی، شن، سنگ آهک، خاک رس و غیره از جریان مستقیم گاز داغ استفاده میشود. برای موادی که نباید تا دمای خیلی بالاتری گرم شوند مانند سولفات آلومینوم و شکر و محصولات کریستالی مواد شیمیایی، از هوای گرم استفاده میشود.
2) حرارت مستقیم، جریان فواری:
مواد جامدی که از آلوده شدن آن با گاز احتراق نگران نیستیم ولی باید تا دمای بالا گرم نشوند مانند سولفید آهن، سنگ گچ و مواد آلی مانند ذغال سنگ احیا نشده و مواد کشاورزی، باید در خشککن موازی خنک شوند.
3)حرارت غیرمستقیم، جریان متقابل:
موادی نظیر پیگمانهای سفید که باید تا درجه حرارت بالا گرم شوند ولی در تماس با گاز نیابد باشند. ممکن است ساختمان خشککن انتخاب شده از آجر نسوز ساخته شده باشد و به وسیله بخار داغ کاملاً احاطه شده باشد. در این حالت دبی جریان هوا را در مینیمم مقدار خود نگه میداریم زیرا در این حالت حرارت بوسیلة هدایت از پوسته و یا لولههای مرکزی اعمل میشود.
4) نوع مستقیم – غیرمستقیم:
این خشککن اقتصادی تر از خشککن مستقیم میباشد و ممکن است برای موادی که در درجه حرارت بالا خشک میشوند با استفاده از لوله بخار بکار گرفته شوند. به عنوان مثال هوای داغ با درجه حرارت 1200 تا of 1400 آنرا ترک کرده و وارد فضای حلقه مانند شده و در تماس با ماده جامد قرار میگیرد . در دمای 140 تاfo170 آنرا ترک میکنند. زغال سنگ خام کلاً به این روش خشک میشوند بدون آنکه مشتعل شوند و یا گرد و غبار آنها محترق شوند. قطر تقریبی این خشک کن تنها از 3 الی 10 (فوت) و طول آنها از 2 الی 100 فوت تغییر میکند.
خشککن دوار مستقیم:این نوع خشک کن معمولاً شامل یک استوانه فلزی ساده بود و برای درجه حرارتهای پایین و یا متوسط مناسب میباشد. برای درجه حرارتهای عملیاتی که در حد پایین میباشد از فلزات با خواص مناسب آن را ساختهاند.
خشککن لوله بخار غیرمستقیم:این نوع خشککن شامل یک استوانه ساده است که مجهز به یک، دو و یا سه ردیف لوله میباشد ودر هنگام عملیات حاوی سیال حرارتی است و در داخل استوانه به صورت طولی نصب شدهاند. این نوع برای خشککنهایی که دارای درجه حرارت بخار (سیال حرارتی) هستند مناسب میباشد و برای خشک کردن موادی که به آلودگی حساس هستند و نباید در تماس با گاز احتراق باشند کاربرد دارد.
خشککن کرکردهای:در این خشککن گاز در داخل بسته سیر لوله میشود و مانند خشککنهای دوار مستقیم برای درجه حرارتهای پایین و متوسط مناسب است.
خشککن مستقیم کرکرهای:هوای داغ (یا هوای سرد) ازمیان کرکرهها به داخل استوانه دوار دو جداره دویده میشوند و از لای کرکرهها عبور کرده و به داخل بستر مواد جامد دمیده میشود و در این حال استوانه یا شل میچرخد وجود پرههای کرکرهای مانند باعث میشود که هوای داغ به صورت یکنواخت به بستر مواد جامد رسیده و عمل انتقال حرارت و جرم بهتر صورت گیرد.
خشککن دوار غیرمستقیم لوله بخار:لولههای بخار گرم کننده به صورت قرینهوار و متحدالمرکز در یک دو و یا سه ردیف نصب شدهاند و همراه استوانه خشک کن میچرخند این لولههای بخارممکن است از نوع لولة ساده باشند که بخار در طول آن ضمن حرارت دادن کندانس شده و این آب کندانس شده از طریق تله بخار دفع میشود.
(تله بخار دارای این خاصیت هست که مایع را اجازه میدهد که از آن عبور کرده و خارج شود ولی از خارج شدن فاز گازی ممانعت میکند.) هوایی که از خشککن خارج میشود خارج میشود تقریباً نزدیک به اشباع است زیرا مقدار هوایی که در این خشککن لازم است، معمولاً خیلی کمتر از مقدار هوای مصرفی در خشککنهای نوع مستقیم است.
بخار داغ وارد لولهها شده و پس از کندانس شدن از آن خارج میشود. جسم خشک شده از درون روزنههایی که در شل قرار دارند خارج میشود. این روزنهها دارای دیوارههایی هستند که باعث میشود عمق بستر در داخل شل همیشه به اندازه کافی باقی بماند. این خشککنها به ویژه برای خشک کردن موادی مناسب است که زمان خشک کردن با شدت نزولی انها طولانی بوده و بتوان آنها را در زمانی نسبتاً طولانی در یک دمای ثابت نگه داشت. دوران شل در ضمن اینکه موجب هم زدن مواد بستر شده و از ایجاد کیک جلوگیری میکند، باعث سهولت جریان بخار آب نیز خواهند شد و به دلیل اتلاف حرارتی پایین جریان هوای خروجی، راندمان بالاست این خشککن برای موادی که نسبت به حرارت حساس هستند مناسب است. زیرا که درجه حرارت ماکزیمم دقیقاً قابل کنترل میباشد و این دما توسط دمای عامل گرم کننده (بخار) کنترل میشود.
در این نوع خشککنها معمولاً خوراک مرطوب از طریق انتقال دهنده مارپیچی و یا ریزشی به داخل خشککن وارد میشود و در خشککنهای معمولی، محصول خشک شده در انتهای استوانه از لابه لای لوله های بخار به بیرون ریخته میشود. بااین کار همچنین هوای استفاده شده جهت خشک کردن و دیگر گازهای موجود ازداخل خشککن خارج میشود. به دلایل زیاد جهت جریان کاز و مواد جامد متقابل میباشد.
محاسبه قطر خشککن
بادرنظر گرفتن روش چگونگی عملیات و میزان رطوبت قابل قبول برای محصول و دمای هوای خروجی مقدار هوای لازم و دمای ورودی آن موازنه جرم و حرارت مشخص میشود. سرعت هوا نبایستی خیلی زیاد باشد، زیرا در این صورت مواد جامد بیش از اندازه منتقل میشوند. برای مواد زبر و درشت (Coarse) تجربیات عملی مشخص کرده سرعت متوسطی برابر 5/2 برای هوای خروجی لازم است. برای مواد زیر (پودری) سرعت خیلی کمتری لازم ایت. یک روش تجربی برای محاسبه سرعت هوا، برابر گرفتن آن با نصف سرعت حد سقوط آزاد کوچکترین ذرات موجود در محصول است. سطح مقطع و قطر خشککن را با این فرض که سطح مؤثر برای جریان هوا 85% سطح کل است میتوان محاسبه نمود.
محاسبه طول خشککن :
اگر زمان خشک شدن را به طریقی بتوان تعیین نمود (در یک واحد خشککن موجود و یا در آزمایشگاه در تحت شرایطی که در خشک اصلی موجود است) این زمان برای طراحی مکانیکی خشککنی که در زمان اقامت مواد درآن، مقدار کمی از زمان خشک شدن بیشتر باشد مورد استفاده قرار میگیرد. رابطهای که میتوان از آن استفاده نمود قبلاً ذکر شده است. مسئله مهم در ایفا یکسان بودن شرایط در خشککن آزمایشگاهی و خشککن اصلی است و این بدان معنی است که زمان خشک شدن میبایستی از روی یک خشککن مقیاس صنعتی و با یک طرح بزرگ نیمه صنعتی تعیین شده باشد.
محاسبه طول خشککن مسئله ای است که تواماً با انتقال جرم و انتقال حرارت مربوط
میشود. روش محاسبه بعداً میآوریم. کل تغییرات مقدار زپرطوبت خوراک در خشککن به تعداد مناسبی تقسیم میشود. این تقسیمها شامل مراحل پیش گرم نمودن خوراک (که خوراک را به دمای حباب مربوط میرساند) و مرحله خشک شدن با شدت ثابت و بقیه تقسیمات (6 تا 10 قسمت) مربوط به مرحله خشک شدن با شدت نزولی میشود. اگر محاسبات با استفاده از کامپیوتر انجام شود میتوان تعداد تقسیمات را زیاد نمود و دقت محاسبات را افزایش نمود. طراح یک خشککن باید هر طراحی را با یک مسئله مجزا و منفرد بداند، طرحهای دیگران تنها میتواند، راهنمایی برای طراحی او باشد.
دمای خوراک و دمای هوا و دمای حباب مرطوب معلوم است انگاه طول قسمت پیش گرم نمودن خوراک و رساندن خوراک به دمای حباب و قسمت خشک شدن با شدت ثابت با استفاده از ضرائب انتقال حرارت محاسبه میشود (فرض میشود که در قسمت پیش گرم نمودن خوراک، خشک شدن صورت نمیگیرد) برای محاسیه طول قسمتی از خشککن که درآن خشک شدن با شدت نزولی صورت میگیرد، ضریب انتقال جرم درواحد طول، بر حسب تابع از مقدار رطوبت لازم است. ضریب انتقال حرارت درسرتاسر خشککن را میتوانیم ثابت فرض کنیم. شاید بهتر باشد نخست زمان خشک شدن تخمین زده شود و آنگاه طول خشک کن برای تامین زمان فوق محاسبه شود. این روش محاسبه اساساً مشابه روش قبل است با این تفاوت که مراحل محاسباتی آن متفاوت است.
دماي ورودي
دماي خروجي
زمان ورود خوراك
66.6
48.3
بعد از 5 دقيقه
76.82
57.1
بعد از 10 دقيقه
65.52
53.82
بعد از 15 دقيقه
70
55.4
بعد از 20 دقيقه
79.4
58.6
« طراحی خشك کن دوار»
برای طراحی یک خشکگن دوار باید موارد زیر را محاسبه کرد:
1) طول و قطر خشککن 2) شیب خشککن
3) مقدار هوای لازم برای عمل خشککردن 4) مقدار حرارت لازم
5) جهت جریان 6) تعداد دور استوانه در واحد زمان
برای بدست آوردن بالا بایستی یک سری معلومات داشته باشیم که عبارتنداز:
1) رطوبت و دمای هوای موجود
2) رطوبت و دمای هوای خروجی از گرمکن
3) رطوبت و دمای هوای خروجی از خشککن
4) رطوبت ماده ورودی
5) مقدار محصول در واحد زمان
6) میزان رطوبت محصول
« محاسبات»
دادههای مسئله:
=وزن سويا200 gr
Set point S2
قطر
وزن سویای مرطوب=255
وزن سویای خشک=200
دمای ورودی
دمای خروجی
سرعت
=جرم200gr=0.2 kg=0.44 I
Sara12
11-30-2010, 10:43 PM
عنوان : تهيه پارا نيترو آنيلين ( NITRO ANILINE )
هدف : در اين آزمايش انتظار مي رود دانشجو با مبحث نيتراسيون تركيبات آلي بيشتر آشنا شده و مباحث ارايه شده در درس تئوري را عينا مشاهده نمايد.
تئوری :
پارا نيترو استانيليد از طريق هيدروليز در محيط اسيدي داستيله مي شود و ايجاد پارا نيترو آنيلين مي كند. بدين ترتيب گروه استيل كه براي محافظت گروه عاملي آمين بكار رفته بود براحتي خارج مي شود .
نيتراته کردن استانيليد و استيلاسيون:
زمانيکه كه نيترات يا سولفات آنيلين در درجه حرارت پايين توسط نيتريك اسيد و سولفوريك اسيد نيتره گردند، محصول داراي حدود 60% متانيتروآنيلين و 38% پارانيتروآنيلين است، كه همراه با آن مقدار كمي ارتو نيترو آنيلين نيز وجود دارد. بعلت اكسيدشدن مقداري از آنيلين بهره بالا نميباشد.
مسلما نيترو آنيلين محصول اصلي است زيرا که گروه با بار "مثبت" "NH3-" خاصيت كشندگي الكترون قوي دارد. در ضمن اين گروه شديداً باعث غيرفعال شدن جايگاههاي ارتو و پارا ميگردد.مقدار قابل ملاحظهاي از پارانيتروآنيلين به وجود ميآيد.
نسبت مشاهده شده براي پارا/متا ميزان اثر سوق دهندگي گروه –NH3+ را ارائه ميدهد. وسعت نيتراسيون پارا با قراردادن گروههاي متيل پي در پي روي اتم ازت كاهش مييابد، در C6H5-N(CH3)+3 منجر به ايجاد 89% متا و 11% مشتق پارانيترو ميگردد.
براي كاهش اكسيداسيون و جلوگيري از اثر سوق دهندگي متا در نمك ايجادي، قبل از نيتراسيون تركيب، آمين آروماتيك را به مشتق استيل تبديل مينمايند. متعاقباً گروه آمين را توسط هيدروليز با محلول آلي اسيدباز برميدارند.
بدين ترتيب آنيلين به استانيليد تبديل شده تحت نيتراسيون معمولي تقريباً تمام آن به پارا نيترواستانيليد تبديل ميگردد، كه در اثر هيدروليز آن پارا نيتروآنيلين بدست ميآيد.
از آنجايي كه فقط مقدار جزئي از ارتو نيترواستانيليد از نيتراسيون حاصل ميگردد، روش غيرمستقيم در يك سري واكنشها براي ايجاد ارتو بعنوان محصول اصلي بكار گرفته ميشود. انيلين به اسيد سولفانيليكي تبديل ميشود كه در آن موقعيت پارا توسط گروه So3H مسدود شده است. نيتراسيون اسيدسولفانيليك توليد -4 آمينو -3 نيتروبنزن سولفونيك اسيد مينمايد، هيدروليز تركيب اخير كه توسط جوشاندن آن با اسيدسولفوريك 60% صورت ميگيرد، حذف گروه So3H را باعث شده و ارتو نيترو آنيلين را با حالات خصوصي بالا در اختيار ميگذارد.
هر 3 نيتروآنيلين بازهاي بينهايت ضعيفي ميباشند، اما از نظر قدرت اسيدي با يكديگر تفاوت قابل ملاحظهاي دارند:
ارتو > پارا > متا
مخلوط نيتروآنيلينها را ميتوان از حل نمودن آنها در اسيدآبي قوي و سپس رسوبگيري پيدر پي، ايزومرهاي ارتو، متا و پارا كه توسط خنثيسازي آنها با آمونياك رقيق انجام ميشود، جدا نمود.
مواد لازم: پارانيترو استانيليد، اسيد سولفوريک غليظ،سديم هيدروکسيد 10%، اتانول
وسايل لازم: ارلن ماير در چند سايز مختلف، کاغذ صافي، حمام آب و يخ، هم زن شيشهاي، قيف، ترازوي ديجيتالي، شيشه ساعت، قيف بوخنر،استوانه مدرج
روش كار :
مرحله 1: 10 گرم پارا نيترو استانيليد + 25 ميلي ليتر آب + 30 ميلي ليتر اسيد كلريدريك غليظ را در يك بالن رفلاكس به مدت 20 دقيقه رفلاكس كنيد.
مرحله 2: وقتي واكنش كامل شد ( چند قطره محلول را با 3 برابر حجمش توسط آب رقيق كنيد اگر شفاف
بود واكنش كامل است) حدود 50 ميلي ليتر آب اضافه كنيد.
مرحله 3 : مخلوط واكنش را در يك بشر بزرگ بريزيد و 100 گرم يخ خرد شده به آن اضافه كنيد سپس
با آمونياك غليظ و سود 10 درصد محيط را قليايي كنيد.
مرحله 4 : رسوب نارنجي متمايل به زرد را صاف كنيد و با الكل 50 درصد و يا آب كريستاليزه كنيد .
فرمول واکنش :
http://i39.tinypic.com/2s9acnb.jpg
خطای آزمایش:
چون در حین افزایش محلول سدیم هیدروکسید مخلوط گرم می شود باید به خوبی همزده شود.
نتیجه گیری:
پارا نيترو استانيليد از طريق هيدروليز در محيط اسيدي داستيله مي شود و ايجاد پارا نيترو
آنيلين مي كند. بدين ترتيب گروه استيل كه براي محافظت گروه عاملي آمين بكار رفته بود
براحتي خارج مي شود .
1-در تهیه P-نیترو آنیلین چرا به جای نیترو دار کردن آنیلین استانیلید نیترو دار و هیدرولیز می شود؟
زیرا در استانیلید گروه آمینو بین دو گروه پذیرنده الکترون یعنی حلقه بنزن و گروه کربونیل قرار دارد به همین دلیل خاصیت بازی ندارد و با اسیدها نمک تولید نمی کند.
2- اگر P-نیترواستانیلید در محلول های اسیدی هیدرولیز می شودچرا هیدرولیز در نیترو دار کردن با مخلوط HNO3 و H2SO4 رخ نمی دهد؟
C6H5-NH(C=O)CH3 استانیلید می باشد که در آن گروه NHCOCH3 بر روی حلقه ی آروماتیکی وجود دارد. حال چنانچه بخواهیم یک گروه دیگر بر روی حلقه قرار دهیم، این گروه می تواند موقعیتهای ارتو، متا و پارا را اشغال نماید. یعنی گروه جدید همسایه ی گروه قبلی باشد (ارتو) و یا یک کربن از آن فاصله داشته باشد(متا) و یا دو کربن فاصله داشته باشد و در دورترین فاصله ی ممکن قرار گیرد (پارا).
استانیلید دارای نقطه ذوب 113 تا 115 درجه ی سانتیگراد و نقطه جوش 304 درجه ی سانتیگراد می باشد.
ارتو و پارا نیترواستانیلید بوسیله ی واکنش استانیلید با مخلوطی از نیتریک اسید و سولفوریک اسید بدست می آید. زیرا گروه نخست یعنی NHCOCH3 گروه حجیمی است، فرم پارا که در آن دو گروه فوق و نیترو از هم فاصله ی بیشتری دارند، پایدارتر بوده و قسمت بیشتر محصول را به خود اختصاص می دهد. اما جدا کردن ایزومرهای پارا و ارتو از طریق تقطیر جز به جز ممکن است، زیرا ابن دو ترکیب در نقطه ی جوش متفاوت هستند.
واکنش استانیلید با نیتریک اسید غلیظ سبب تولید پارانیترواستانیلید می شود. برای بالا بردن بازده می توان از نسبت 3 به 1 از سولفوریک اسید و نیتریک اسید استفاده نمود. چون این واکنش گرمازا است، باید افزایش استانیلید به اسید نیتریک غلیظ بسیار آهسته و همراه با سردکردن محیط واکنش صورت گیرد.
دکانتور یا قیف جداکننده ، وسیله ای است که به کمک آن می توان دو فاز آبی و آلی را از هم جدا نمود. این وسیله در قسمت انتها دارای یک شیر است که با باز کردن آن، لایه ی زیرین به راحتی از لایه ی بالایی جدا می شود.
Sara12
11-30-2010, 10:44 PM
اندازه گیری نقطه اشتعال (Flash point) و نقطه آتش (Fire point)
تعریف : نقطه اشتعال کمترین دما در فشار جو می باشد که در آن دما تحت شرایط ویژه آزمایش ، بخارات متصاعد از نمونه با هوا مخلوط قابل اشتعال به وجود می آورند ؛ بطوریکه با نزدیک کردن یک شعله به این بخارات برای یک لحظه مشتعل می شود . تقطه آتش (Fire point ) کمترین دمایی است که در آن مشتعل شدن بخارات نمونه و هوا حداقل به مدت 5 ثانیه دوام داشته باشد.
در این آزمایش با روش باز (Cleveland open cup) نقطه اشتعال اندازه گیری می شود و برای مواد نفتی که نقطه اشتعال آنها زیر 79 درجه سانتی گراد باشد به کار می رود .
ظرف مخصوص دستگاه تا علامت نشانه از نمونه پر می شود . حرارت دادن به نمونه طوری تنظیم می شود که ابتدا در هر دقیقه 14 تا 17 درجه سانتیگراد افزایش دما داشته باشد. از 28 درجه سانتیگراد مانده به نقطه اشتعال حرارت را کم کرده تا در هر دقیقه 5 تا 6 درجه سانتیگراد دما افزایش یابد . سپس هر 2 درجه سانتی گراد شعله را از روی نمونه عبور می دهیم (مدت 1 ثانیه) هنگامی که با عبور شعله از روی نمونه بخارات برای لحظه ای مشتعل و سپس خاموش می شوند ، آن دما را یادداشت کرده و بعنوان نقطه اشتعال گزارش می شود .حرارت دادن را ادامه داده تا به دمایی برسیم که در آن دما با نزدیک شدن شعله بخارات حداقل به مدت 5 ثانیه مشتعل باقی بماند . این دما را به عنوان نقطه آتش Fire point یادداشت کنید.
با توجه به اینکه شما در شیراز آزمایش را انجام می دهید که فشار هوا در شیراز کمتر از فشار استاندارد 760 میلیمتر جیوه است . بایستی نقطه اشتعال اندازه گیری شده را برای فشار جو تصحیح کنید .
(p-760)03/0+نقطه اشتعال در فشار شیراز = نقطه اشتعال
P = فشار محیط بر حسب میلیمتر جیوه در شیراز
نمونه مورد آزمایش نفت سفید است .
آزمایش تعیین گرانروی سیال با روش سقوط آزاد جسم کروی
(Falling ball method)
هدف: در این آزمایش با اندازه گیری سرعت حد یک جسم کروی در داخل سیال گرانروی آن سیال تعیین می شود .
تئوری:
وقتی یک جسم کروی در داخل یک سیال به صورت سقوط آزاد رها می شود تحت سه نیرو حرکت می کند ، نیروی جاذبه Fg و نیروی ارشمیدس Fb و نیروی مقاومت سیال (دراگ)Fd .
جسم تحت نیروی وزن Fg حرکت می کند و نیروی ارشمیدس و نیروی دراگ در جهت مخالف حرکت آن اثر می کنند. نیروی دراگ با افزایش سرعت جسم زیاد می شود و نهایتا جسم پس از طی مسافتی به سرعتی می رسد که در آن سرعت برآیند نیروها مساوی صفر می شود . طبق قانون حرکت نیوتن:
a = شتاب
m = جرم جسم
Fi = نیروهای وارد بر جسم
وقتی مجموع نیرو ها صفر شود شتاب هم صفر می شود و جسم با سرعت ثابتی حرکت می کند . این سرعت ثابت را سرعت حد می نامند که طبق قانون استوک این سرعت را بدست می آوریم .
= سرعت حد
= قطر جسم کروی
= چگالی جسم کروی
= چگالی سیال
= گرانروی سیال
روش کار:
جسم کروی را که قبلا تمیز شده است از بالای ستون سیال درست روی سطح سیال در وسط ستون رها می کنیم تا پس از طی مسافتی به سرعت حد برسد . با استفاده از کرنومتر ، زمان حرکت کره را برای مسافت مشخص اندازه می گیریم. سرعت را محاسبه کرده سپس با استفاده از قانون استوک گرانروی را محاسبه می کنیم .
آزمایش تعیین نقطه نرمی :
هدف:در این آزمایش طبق استاندارد IP نقطه نرمی قیر را تعیین می کنند.
مقدمه : قیر ماده سیاه رنگی است که از شمار زیادی هیدرو کربور که به صورت کلوئیدی در کنار یکدیگر معلق هستند تشکیل شده است . این هیدروکربور ها سه دسته هستند: آسفالتین ها ، رزین ها و روغن ها .
قیر در یک دمای مشخص از حالت جامد به حالت مایع تغییر حالت نمی دهد .تغییر حالت قیر در اثر افزایش درجه حرارت بطور تدریجی انجام می گیرد . اندازه گیری نقطه نرمی قیر تحت شرایط خاصی که دقیقا کنترل شده و استاندارد است بایستی انجام گیرد . دستورالعمل کامل این آزمایش در آیین نامه AASHTO و در IP 58 شرح داده شده است . اندازه گیری نقطه نرمی قیر با استفاده از روش Ring ball انجام می شود.
تعریف: درجه نرمی قیر دمایی است که قیر در آن دما تحت شرایط خاص آزمایش از حالت جامد به حالت روان تبدیل شده و نرمی خاصی پیدا می کند . در روش Ring Ball نقطه نرمی قیر درجه حرارتی است که در آن دما کره ی فولادی با وزن و قطر معین از داخل یک لایه قیر با قطر و ضخامت مشخص عبور می کند و به صفحه ای که در فاصله 25 میلیمتری از آن قرار دارد می رسد.
روش آزمایش:
مقدار لازم از قیر را در ظرف مخصوص ریخته و حرارت می دهیم تا قیر کاملا ذوب و یکنواخت گردد و قطرات احتمالی موجود در آن بخار شود . حلقه ها را که قبلا تمیز و آماده شده روی یک صفحه که با مقداری گلیسیرین مایع آغشته شده قرار می دهیم و سپس قیر مذاب را به آرامی داخل حلقه ریخته تا سطح آن یکنواخت و صاف شود . اگر سطح قیر درون حلقه پس از سرد شدن ناصاف بود با یک چاقوی داغ قیرهای اضافی را جدا کرده تا سطح آن صاف شود . حلقه های آماده شده را در دستگاه Ring ball قرار داده و کره فولادی را روی سطح قیر در وسط آن قرار می دهیم و مجموعه را داخل بستر محتوی آب قرار می دهیم . دمای آب را افزایش داده تا دمایی که در آن کره فولادی از درون قیر عبور کرده و به پایین بشر سقوط نماید . این دما را به عنوان نقطه نرمی قیر گزارش می کنیم:
اگر نقطه نرمی قیر بالاتر از 80 درجه سانتیگراد باشد از گلیسیرول به جای آب استفاده می شود . آزمایش را برای دو نمونه از یک قیر انجام می دهیم اگر دمای بدست آمده بیشتر از 1 درجه سانتی گراد تفاوت داشته باشد بایستی آزمایش را تکرار کرد.
ASDM D 86
IP-123 distillation of petroleum products
تقطیر مواد نفتی
در این روش عملیات تقطیر روی نمونه های بنزین موتور (gasoline) بنزین هواپیما (Aviation gasoline) نفتا White spirit و نفت سفید و گازوئیل و نفت کوره انجام می گیرد . این آزمایش به منظور به دست آوردن حدودی از ترکیب شیمیایی یک برش نفتی انجام می گیرد و نتایج به صورت یک منحنی تقطیر رسم می گردد و نتیجه آزمایش مشخص کننده درجه فراریت برش نفتی می باشد.
روش انجام آزمایش
پس از تنظیم دستگاه تقطیر ASTM مقدار 100 cc از نمونه را در بالن دستگاه تقطیر ریخته و آن را با ملایمت حرارت می دهند . پس از مشاهده اولین قطره مایع تقطیر شده دما را یادداشت کرده و سپس درجه حرارت های مربوط به 5 ، 10 ،20، .... ، 90 ،95 درصد حجم تقطیر شده را یادداشت می نمایند . با این داده ها می توان منحنی تقطیر (درجه حرارت بر حسب درصد حجمی تقطیر شده ) را رسم نمود .
تعاریف:
نقطه ابتدایی جوش (Initial boiling point) : درجه حرارتی که در آن اولین قطره ی مایع از لوله دستگاه تقطیر می چکد.
- نقطه نهایی جوش یا نقطه پایان (End point or finagling point): بالاترین دمایی که در طول آزمایش خوانده می شود . این معمولا هنگامی است که تمام مایع در بالن تقطیر بخار شود .
- نقطه خشک (Dry point) : درجه حرارتی که در آن آخرین قطره مایع بخار می شود .
- نقطه تجزیه (decomposition point) : دمایی که با اولین نشانه های تجزیه حرارتی مایع درون فلاسک مطابقت داشته باشد که معمولا این نشانه ها ( دودکردن نمونه ، کاهش دمای نمونه و ...) می باشد .
درصد بازیافت (Percent Recover): درصد حداکثر distillate جمع آوری شده نسبت به مایع اولیه
درصد بازیافت کل (Percent Total Recovery) : مجموع ماکزیمم Recovery + مایع باقی مانده در فلاسک نسبت به مایع اولیه
(100-percent Total Recovery)=percent loss
درصد باقیمانده (percent Residue): حجم مایع باقیمانده در فلاسک بر حسب cc
=(percent total recovery – percent recovery)
در این روش نقاط جوش اندازه گیری شده بایستی در فشار استاندارد 760 میلیمتر جیوه گزارش گردد . بنابراین اگر در فشاری غیر از فشار استاندارد اندازه گیری شود بایستی آن را تصحیح کرد .
با روابط زیر:
Cc=0.00012 (760-P)(273+tc)
Cf =0.00012 (760-P)(460+tc)
آزمایش تعیین چگالی مایعات
هدف : در این آزمایش با استفاده از لوله U شکل و V شکل چگالی یک مایع را با دانشتن چگالی مایع دیگری که در آن قابل حل شدن نیست اندازه گیری کنیم.
فشار در داخل یک مایع ساکن با چگالی از رابطه زیر به دست می آید:
که نشان می دهد که در داخل یک مایع در عمق یکسان فشار در تمام نقاط برابر می شود .
روش انجام آزمایش:
لوله U شکل روبرو را در نظر بگیرید که با مقداری آب با چگالی و مایع دیگری که در آب حل نمی شود با چگالی پر شده است.
در نقطه C فشار یکسان است بنابراین :
• با اندازه گیری ارتفاع L,d و دانستن ، چگالی مایع را محاسبه کنید.
• عملیات را برای لوله V شکل نیز انجام داده و برای رسیدن به رابطه مربوط ، مطابق محاسبات فوق انجام دهید.
آزمایش اندازه گیری گرانروی سینماتیک
(Kinematic Viscocity)
هدف آزمایش : در این آزمایش با استفاده از ویسکومتر اوستوالد (Ostwald) گرانروی سینماتیک اندازه گیری می شود .
گرانروی سینماتیک
: گرانروی مطلق بر حسب سانتی پویز (Centipoise)
: گرانروی سینماتیک بر حسب سانتی استوک (Centistoke)
s : چگالی نسبی ، که از تقسیم چگالی سیال بر چگالی آب به دست می آید .
روش آزمایش :
با توجه به اینکه گرانروی مایعات با افزایش دما کاهش می یابد ، آزمایش در دمای ثابت انجام می شود . حجم مشخص و استانداردی از نمونه درون ویسکومتر که قبلا تمیز و خشک شده است ، ریخته و در داخل حمام آب با دمای ثابت قرار می دهیم (با استفاده از گیره های مخصوص ) زمان تخلیه حجم مشخصی از سیال را اندازه گیری می کنیم برای هر نمونه دو بار انجام دهید .
(ضریب ویسکومتر)
ضریب ویسکومتر بر حسب mm2/sec2 و t بر حسب ثانیه می باشد . بنابراین بر حسب mm2/sec است که هر mm2/sec برابر یک سانتی استوک می باشد.
1 mm2/sec = 1 centistoke
• گرانروی سینماتیک و گرانروی مطلق آب و آب اکسیژنه را محاسبه کنید .
• اثر دما روی گرانروی مایعات و گازها را توضیح دهید .
آزمایش اندازه گیری گرانروی سینماتیک
(Cloud point of Petroleum Oils)
نقطه ابری شدن(Cloud point) هر گاه برش نفتی بدون تکان دادن سرد گردد به درجه حرارتی که در آن میکرو کریستالها تشکیل یا کدورتی در برش مشاهده شود "نقطه ابری شدن" گفته می شود . اگر عمل سرد نمودن ادامه یابد زمانی فرا می رسد که اگر لوله آزمون را به حالت افقی قرار دهیم برش دیگر در آن جابجا نشده و نمی ریزد .پس از تنظیم دستگاه مطابق شکل زیر ، نمونه را داخل یک لوله آزمایش تمیز (Test jar) ریخته و توسط حمام آب گرم آنرا گرم نمایید تا ذوب شود . سپس آنرا داخل یک ظرف حاوی یخ (Cooling bath) قرار دهید ، همواره دمای Cooling bath بایستی بین 1- تا 2 درجه سانتی گراد باشد .
در فواصل زمانی معین Test jar را از پوشش (jacket) بدقت و به آهستگی خارج نمایید ، بطوریکه هیچگونه آشفتگی در برش بوجود نیاید . سپس ابری شدن آنرا چک نمایید و دوباره در جای خود قرار دهید . این عملیات بایستی حداکثر در 3 ثانیه صورت گیرد . با مشاهده اولین ذرات کریستال که نشانه ابری شدن نمونه می باشد دما را یادداشت نمایید . این دما نقطه ابری شدن خواهد بود.
اگر برش نشانه ای از ابری شدن از خود نشان نداد ، Test jar را به یک jacket دیگر در ظرف دومی که دمای Cooling bath آن بین تا باشد منتقل کنید . اگر باز هم اثری از کدورت مشاهده نشد Test jar را به ظرف دیگری انتقال داده و این کار را تکرار نموده تا اینکه اولین ذرات کریستال در ته لوله آزمایش مشاهده شود . با مشاهده اولین ذرات دمای ترمو متر را به عنوان نقطه ابری شدن یادداشت کنید.
از هیدروکربنهایی که دارای نقطه ابری کمتر از هستند جهت این آزمون استفاده خواهند شد . در ضمن دانستن این نقطه به شناسایی نسبت درصد پارافینها در روغن ها کمک می نماید با نسبت درصد هیدروکربنهای با نقطه انجماد بالا را در برش مربوطه تعیین می نماید.
سوالات آزمایش Cloud point :
1) نقطه ابری شدن Cloud point را تعریف کنید؟
2) کاربرد عملی این آزمایش را شرح دهید؟
3) نحوه انجام آزمایش را توضیح دهید؟
4) وضعیت دماسنج را در این آزمایش بیان نمایید؟
آزمایش تعیین نقطه ریزش
(Pour point of petroleum Oils)
نقطه ریزش (Pour point) : کمترین دمایی که در آن سیال نفتی از جریان می ایستد (نقطه شروع حالت جامد شدن ) که چند درجه از دمای کدر شدن (Cloud point) پایین تر است و چنانچه دما از آن حد پایین تر برود انجماد شروع می شود را "نقطه ریزش" می گویند.
پس از تنظیم دستگاه مطابق شکل زیر ، نمونه را که ماده نفتی سیاه رنگی است بعد از گرم کردن اولیه در یک ظرف حاوی یخ (Cooling Bath) قرار دهید . لازم به ذکر است که دمای ظرف بایستی بین تا باشد و فاصله ترمومتر می بایستی حدود 3 میلی لیتر زیر سطح مایع نفتی باشد . پس از یکی دو دقیقه نمونه را در آورده و کمی آنرا متمایل نمائید و به مدت 5 ثانیه آنرا در وضعیت افقی قرار دهید و به دقت آنرا مشاهده کنید اگر در این وضعیت سیال از خود حرکتی نشان داد لوله آزمایش را در پوشش (jacket) قرار دهید و آزمایش را برای پایین تر تکرار نمایید . این آزمایش را تا وقتیکه سیال داخل Test jar در حالت افقی به مدت 5 ثانیه حرکتی از خود نشان ندهد انجام دهید .و در اولین حالت دمای ترمومتر را بعنوان نقطه ریزش یادداشت نمائید .
با اطلاع از مقادیر دو نقطه ابری شدن (Cloud point) و ریزش (Pour point) حدود استفاده برشها (بخصوص هنگام پمپاژ در زمستان ) تعیین می گردد.
سوالات آزمایش Pour point :
5) نقطه ریزش (Pour point )را تعریف کنید؟
6) وضعیت دماسنج را در این آزمایش را شرح دهید؟
7) نحوه انجام آزمایش را توضیح دهید؟
8) کاربرد عملی این آزمایش بیان نمایید؟
تعیین نقطه آنیلین
(Aniline point)
هدف:
با این روش نقطه آنیلین مواد نفتی را می توان تعیین کرد.
مقدمه :
برای شناسایی کات های نفتی آزمایش های زیادی انجام می شود از آن جمله تعیین نقطه آنیلین است ، با بدست آوردن این نقطه می توان میزان مولکول های آروماتیک (حلقوی )موجود در کات مورد آزمایش را مشخص نمود . همچنین برای مشخص کردن خیلی از اندیس های محاسباتی در پالایشگاهها بر ارتباط های نفتی این نقطه به کار برد .
یکی از ساده ترین کاربردهای آن برای شناسایی روغن ها است ، برای توضیح آن می توان گفت :
1- اندیس ویسکوزیته (viscosity index) نشانگر تغییرات ویسکوزیته روغن با دما است هر چه V.I بزرگتر باشد تغییرات ویسکوزیته با دما کمتر است.
2- در Lubricating Oil اگر میزان آروماتیک بالا باشد ، اندیس ویسکوزیته روغن کمتر است .
3- هر چه میزان آروماتیک در کات مورد آزمایش کمتر باشد نقطه آنیلین آن کات نفتی بالاتر است . بنابراین برای بدست آوردن روغن چهار فصل باید میزان مولکول های حلقوی روغن پایین باشد و با آزمایش نقطه آنیلین و بالا بردن دمای این نقطه را می توان مورد سنجش قرار داد.
آماده سازی دستگاه :
1) دستگاهی مطابق شکل (1) برای شروع آزمایش فراهم شود .
2) برای گرم کردن از حمام روغن،گلیسیرین ، پارافین استفاده شود.
3) دماسنج را بالاتر از سطح روغن و آنیلین بصورت عمودی قرار دهید.
وسایل مورد لزوم :
1- دماسنج
2- همزن
3- چوب پنبه مناسب
4- لوله آزمایش مناسب
5- بشر بزرگ
6- گیره و سه پایه
7- شمع حرارت دهنده
روش کار:
1) در لوله آزمایش 5 میلی لیتر از آنیلین و 5 میلی لیتر از کات مورد آزمایش را در لوله ریخته شود
2) در لوله آزمایش با چوب پنبه محکم بسته شود و دماسنج را بصورت مناسب قرار می دهیم.
3) لوله آزمایش را با کمک گیره در حمام گرم کننده قرار داده و شعله زیر آن روشن شود .
4) با کمک همزن مرتب مواد درون لوله را هم زده و با دقت به دما و مواد درون لوله توجه کنید .
5) دمایی که دوفاز آنیلین و کات نفتی تشکیل یک فاز را می دهند خوانده شود . این دما همان نقطه آنیلین است و بعد از سرد شدن و دو فازی شدن نیز می توان دما را مشاهده کرد
Sara12
11-30-2010, 10:46 PM
مقدمه (شیشه همراه همیشگی ما):
آيا هرگز به اين موضوع انديشيده ايد كه بدون استفاده از شيشه زندگي روزمره شما عملا مختل مي شود؟
شيشه پنجره منزلتان به عنوان عايق حرارتي از نفوذ گرما و سرما تا حدي و باد به داخل منزل جلوگيري مي كند و اين در حالي است كه نور را از خود عبور مي دهد و حتي امروز شاهد ساخت شيشه هايي هستيم كه گرماي نور خورشيد را گرفته و تنها به قسمت مريي آن اجازه عبور مي دهد.
كمي به اطرافتان دقت كنيد, احتمالا شيشه را در همه جا خواهيد يافت. در تلويزيون, لنز شيشه اي عينك و يا دوربين هاي شما, اتومبيل, پنجره ها, لامپ و حتي بسياري از وسايل ديگر كه به نحوي با شيشه در ارتباطند.
شيشه برخلاف ساير جامدات فاقد نظم بلند يكنواخت در داخل ساختار خود است. وجود ساختار منظم در جامدات به اصطلاح كريستال يا بلور ناميده مي شود و اين در حالي است كه اين نظم كوتاهي كه در شيشه وجود دارد بهنام آمورف شناخته مي شود. از اين رو در حقيقت شيشه جامدي مجازي است. اين خصوصيت غير عادي در ساختار شيشه تعيين كننده ويژگي ها و خواص اين ماده پر مصرف است. علت شفافيت شيشه در مقابل همين فقدان نظم تكرار شونده در شيشه مي باشد. شعاع نوري در حين گذراز شيشه تنها هشت تا ده درصد از قدرت خود را از دست مي دهد. اسحاق نيوتن اولين كسي بود كه تشخيص داد يك منشور شيشه اي, نور سفيد را به نورهاي تشكيل دهنده نور سفيد تفكيك مي كند.
اگرچه معمولا مردم شيشه را شكننده مي دانند قدرت آن در بعضي موارد قابل توجه است, به عنوان مثال يك رشته شيشه تازه شكل گرفته نيرويي معادل 70000 كيلوگرم بر سانتيمتر مكعب را تحمل مي كند ولي با اين وجود وزني كه شيشه معمولي تحمل مي كند يك صدم وزني است كه در تئوري براي آن قائل شده اند و اين به دليل نقائص موجود در شيشه به صورت حباب هوا و ... است.
تاریخچه شیشه
انسان حتی پیش از اینکه خود شیشه بسازد، شیشههای طبیعی نظیر فولگوریت و کوارتز را کشف نموده و از آنها در موارد گوناگون استفاده کرده است. کسی از نخستین شیشهگر چیزی نمیداند. تاریخ ساختن نخستین شیشه نیز معلوم نیست.
در تاریخ میخوانیم که به احتمال ، دههزار سال پیش از میلاد مسیح در کشور مصر یا سوریه ، یک نوع شیشه ابتدایی ساخته شده است. ولی مدارکی دال بر صحت این موضوع در دست نیست، ولی یقین داریم که در 300 سال پیش از میلاد ، در مصر کارگاههای کوچک شیشهگری وجود داشته است و شیشه را از ماسه و سود میساختند. میتوان گفت در آن تاریخ ، وسایل شیشهای جزو اشیاء تجملی مورد استفاده درباریان و توانگران قرار گرفته است.
اکنون در موزه بریتانیا ، قدیمیترین ظرف شیشهای را میتوان دید که 70 سال پیش از میلاد در رم ساخته و پرداخته شده است. بعدها در سدههای 11 و 12 میلادی ، مسلمانان در تکمیل هنر شیشهگری کوشیدهاند.
در سده سیزدهم میلادی ، اروپائیان ، شیشه رنگی را ساختند و از آن ، جهت تزئین کلیساها استفاده کردند. اما در آن زمان ، یک وسیله شیشهای ، حاصل مدتها تلاش و کوشش یک هنرمند بود و این کار دستی قیمت سرسامآوری داشت. تنها از اوایل سده نوزدهم است که ماشین شیشهسازی به روش فشردن ماده مذاب آن اختراع شد و وسایل گوناگون و ارزانقیمت شیشهای متداول گردید.
مواد خام شیشه:
ترکیبات اولیه شیشه
به منظور تولید شیشه ، سالانه ، مقادیر بسیار زیادی ماسه شیشه ، سدیم کربنات ، سدیم سولفات ناخالص و غیره مورد نیاز است. در این مقاله منابع تهیه این مواد و علت استفاده از آنها ذکر میشود.
مواد اصلی شیشه :
ماسه شیشه
ماسه لازم برای تولید شیشه باید تقریبا کوارتز خالص باشد. در بسیاری موارد ، منطقه تهنشینی ماسه شیشه ، محل کارخانه شیشه سازی را تعیین کرده است. برای ظروف غذاخوری ، مقدار آهن موجود در ماسه نباید از 45% و برای شیشه اپتیکی نباید از 0.015% تجاوز کند، چرا که آهن تاثیر نامطلوبی بر رنگ اغلب شیشهها دارد. (http://iranchem.blogfa.com/)
سودا
Na2 یا سودا اصولا از سدیم کربنات چگال ( Na2CO3 ) تامین میشود. سایر منابع عبارتند از سدیم بیکربنات ، سدیم سولفات ناخالص و نیترات سدیم. نیترات سدیم برای اکسایش آهن و شتاب دادن به عمل ذوب نیز مفید است. منابع مهم آهک (CaO) سنگ آهک و آهک پخته حاصل از دولومیت (CaCO3.MgCO3 ) است که خود MgO را نیز وارد عمل میکند.
فلدسپار
این مواد دارای فرمول کلی R2O. Al2O3 . 6SiO2 هستند که در آنها R2O ، معرف Na2O یا K2O یا مخلوطی از این دو است. این مواد در مقایسه با اکثر مواد دیگری که منبع Al2O3 هستند، مزایای بسیاری دارند. فلدسپارها ارزان ، خالص و گدازپذیرند و کلا" ازاکسیدهای ایجاد کننده شیشه تشکیل شدهاند.
از خود Al2O3 تنها هنگامی استفاده میشود که قیمت محصول از درجه دوم اهمیت برخوردار باشد. فلدسپارها همچنین Na2O یا K2O و SiO2 را نیز تامین میکنند. مقدار آلومین در پایین آوردن نقطه ذوب شیشه و کُند کردن واشیشهای شدن ، موثر است.
بوراکس
بوراکس به عنوان یک جزء ترکیبی فرعی ، هم Na2O و هم اکسید بوریک را برای شیشه تامین میکند. هر چند که از بوراکس به ندرت در شیشه پنجره یا شیشه جام استفاده میشود، اما اکنون این ماده ، عموما در انواع خاصی از شیشه بطریها بکار میرود. یک نوع شیشه بوراتی با ضریب شکست بالا نیز وجود دارد که در مقایسه با شیشههای قبلی ، مقدار پراش نور آن کمترو ضریب شکست نور در آن بالاتر است و شیشه اپتیکی باارزشی بشمار میرود.
بوراکس علاوه بر توانایی بالا در ایجاد گدازش ، نهتنها ضریب انبساط را پایین میآورد، بلکه دوام شیمیایی را نیز افزایش میدهد. هنگامی که قلیائیت اندکی در فرایند تولید مورد نظر باشد، از اسید بوریک استفاده میشود که بهای آن ، دو برابر بوراکس است.
سدیم سولفات ناخالص
این ماده که مدتها مانند سایر سولفاتها نظیر آمونیوم سولفات و باریم سولفات ، یک جزء ترکیبی فرعی در شیشه تلقی میشد، غالبا در تمام انواع شیشه بکار میرود. این ماده ، کف موجود در کورههای مخزنی را که ایجاد مشکل میکند، حذف مینماید. برای کاهش سولفاتها به سولفیتها ، از کربن استفاده میشود.
ممکن است برای ایجاد سهولت در حذف حبابها ، آرسنیک تریوکسید افزوده شود. آهن را با سدیم یا نیترات پتاسیم ، اکسید میکنند تا مقدار آن در شیشه نهایی چندان قابل توجه نباشد. از پتاسیم نیترات یا کربنات ، در بسیاری از شیشههای مرغوبتر نظیر شیشه ظروف غذاخوری ، شیشه تزئینی و شیشه اپتیکی استفاده میشود. (http://iranchem.blogfa.com/)
خرده شیشه
این ماده از خرد کردن کالاهای معیوب ، لبههای پرداخت شده کالاها یا سایر ضایعات شیشهای بدست میآید و استفاده از آن ، سبب سهولت عملیات ذوب میشود و در عین حال ، مواد ضایعاتی نیز به مصرف میرسند. ممکن است مقدار خرده شیشه مصرفی در هر بار بین 10 تا 80 درصد باشد.
ترکیبات ثانوی شیشه
اجزای ثانوی شیشه ، موادی هستند که بوسیله آنها میتوان برخی معایب شیشهها را اصلاح و خواص آنها را تعیین کرد. این مواد بر مبنای عمل آنها طبقهبندی شدهاند و بر حسب نوع اصلاحی که انجام میدهند در مراحل مختلف شیشه سازی به ترکیبات شیشه اضافه میشوند.
مواد فرعی شیشه :
پایدار کنندهها
پایدار کنندهها ترکیباتی هستند که حلالیت شیشهها را در مقابل آب و مواد شیمیایی تا اندازهای کم میکنند. بطور کلی ، پایدار کنندهها از اجزای تشکیلدهنده شیشه هستند که خصوصیت آن را تعیین میکنند. پایدار کنندههای قابل ذکر به صورت زیر میباشند.
کربنات کلسیم : کربنات کلسیم جهت غیر محلول کردن شیشه در آب بکار میرود.
کربنات باریم : کربنات باریم سبب افزایش وزن مخصوص شیشه میشود.
اکسید سرب Pb3 و PbO : اکسید سرب موجب شفافیت و صاف بودن شیشه میشود.
اکسید روی : اکسید روی باعث افزایش مقاومت حرارتی و مکانیکی شیشه و خواص مکانیکی و شیمیایی آن میشود.
اولومیت MgCO3 + CaCO3 : اولومیت باعث سهولت سوختن ترکیبات اولیه شیشه میشود.
رنگزداها
شیشهها ممکن است به خاطر داشتن مقدار کمی از اکسیدهای آهن رنگی بنظر آیند، این رنگ در نتیجه ناخالص بودن مواد اولیه است. برای از بین بردن این ناخالصی از دیاکسید منگنز یا فلز سلنیوم استفاده میشود. دیاکسید منگنز وقتی به شیشه مذاب افزوده میشود، سیلیکات فرو را به سیلیکات فریک اکسید میکند. اکسید منگنز (II) به رنگ بنفش و سیلیکات فریک به رنگ زرد میباشد. این دو رنگ مکمل یکدیگرند. بنابراین مخلوط شیشه ، بیرنگ خواهد شد. سلنیوم بعلت گران بودن ، کمتر مورد استفاده قرار میگیرد. سلنیوم ، رنگ توده مخلوط را صورتی میکند که در نهایت با رنگ سیلیکات فرو که سبز پریده است، ترکیب شده ، آن را بیرنگ میکند.
رنگین کنندهها
این مواد برای تولید شیشههای رنگی به ترکیب شیشه افزوده میشوند.
مات کنندهها
مات کنندهها موادی هستند که در توده مخلوط شیشه ، پخش شده ، آن را کدر میکنند. از مات کنندهها می توان فلوئوریت CaF2 و سدیم فلوئورو آمینات ، سدیم فلوئورو سیلیکات Na2SiF6 را نام برد، اما فسفات کلسیم ، فسفات قلع و فسفاتهای زیرکونیوم هم بطور وسیع ، بعنوان مات کنندهها مورد استفاده قرار میگیرند.
سیال کنندهها
فلدسپارها بعنوان سیال کننده توده خمیر شیشهای بکار میوند، با وجود این ، قابلیت ذوب و گستره دمایی که شیشه باید در آن ساخته شود با افزایش اکسیدهای فلزات قلیایی مخصوصا اکسیدهای سدیم و پتاسیم افزایش مییابد. این قبیل اکسیدها را میتوان از کربناتها یا سولفاتهای فلزات مربوطه بدست آورد، کربناتها بخاطر مقدار آهن کمتر ترجیح داده میشوند.
انواع شیشه ها :
شیشه سیلیسی یا کوارتزی
این شیشهها از ذوب شنهای کوارتزی بدست میآید و معمولا برای ساختن ظروف آزمایشگاهی که نیاز به تحمل دماهای بالا دارند (بیش از دمایی که شیشههای پیرکس تحمل میکنند) بکار میرود. ساخت سیلیس 100% و کار با آن مشکل است، زیرا سیلیس در دماهای بالا تمایل به تبخیر شدن دارد.
مشخصات شیشههای سیلیسی
شیشههای سیلیسی دارای 99.8 % سیلیس بوده ، دمای کار با آن ، حدود است. ضریب انبساطی شیشه کوارتزی در هر درجه سانتیگراد است و دمای تاباندن آن است. برای تاباندن ظروف شیشهای سیلیسی که ضخامت جداره آن تا 2mm باشد، میتوان از شعله استفاده کرد. طیف دمایی که در آن سیلیس نرم شکلپذیر است، بطور محسوس کوتاه بوده ، برای عملیات شکل دادن به آن ، بجای دمیدن از ابزارهای زغالی استفاده میشود.
انواع شیشههای سیلیسی
نوع اول
نوع اول به شیشه جلا داده شده معروف است. شفاف بوده ، دارای سطوح داخلی و خارجی صاف است. از آن ، به عنوان روکش ترموکوپلها در کورههای گازی و اجاق گازها استفاده میشود.
نوع دوم
نوع دوم دارای سطوح خارجی زبر و ناهموار است. در ساختمان کورههای الکتریکی بکار میرود و به شیشههای شنی معروف است. (http://iranchem.blogfa.com/)
نوع سوم
نوع سوم از گداختن شیشههای شنی بدست میآید. دارای سطوح خارجی و داخلی نسبتا صاف بوده ، برای انجام واکنشهای شیمیایی و یا احتراقی در فشار جو یا تحت خلاء بکار میرود و به شیشه لعابدار معروف است.
نوع چهارم
شیشههای سیلیسی نوع چهارم دارای شفافیت زیاد در برابر نور مرئی و اشعه ماورای بنفش و مادون قرمز است. دارای قدرت مکانیکی و مقاومت شیمیایی بالاتری از شیشههای نیم شفاف است و برای کارهای تحت خلاء مورد استفاده قرار میگیرد. این شیشه به شیشه استاندارد و شفاف معروف است و بسیار گرانتر از سایر شیشههای سیلیسی است. شیشه سیلیسی نوع چهارم ، ترکیبی از سیلیس 5.96 % ، اکسید بور 3 % و اکسید آلومینیوم 0.5 % میباشد.
خواص شیشههای سیلیسی نوع چهارم
این شیشه در دمای 1520 شکلپذیر میشود و آنرا با چراغهایی که سوخت آنها هیدروژن همراه با گاز مایع است که بطور محسوس از ضریب انبساط شیشههای پیرکس کمتر و اندکی از ضریب انبساط سیلیس خالص بیشتر است. این شیشه ، استعداد تاباندن خوبی دارد و تا دمای را بدون تغییر شکل تحمل میکند و برای مواردی که نیاز به تحمل حرارتهای بسیار بالا ضروری است، از این شیشهها استفاده میشود.
کاربرد شیشههای سیلیس نوع چهارم
بهدلیل شفافیت فوقالعاده از این شیشهها برای ساخت سلهای اندازه گیری طول موج ، دماغه موشکها و شیشههای سفینههای فضایی استفاده میشود. این شیشهها از لحاظ شیمیایی و فیزیکی بسیار مقاوم بوده ، استفاده از آن در کارهای معمول و متداول شیشهگری بهدلیل گرانی مقرون به صرفه نیست.
شیشه بوروسیلیکات
در سالهای اخیر ، انواعی از شیشههای بوروسیلیکات که برای کارهای عمومی و ساخت لوازم آزمایشگاهی مناسب هستند، تولید شده است. اکنون این شیشهها در سطح وسیعی مورد استفاده قرار میگیرند و اکثر مردم آنها را با نام عمومی پیرکس میشناسند.
ترکیب شیشههای بور و سیلیکات
این شیشهها معمولا از 10 الی 20% و 80 الی 87% سیلیکاتها و کمتر از 10% از و مقدار جزئی از ترکیبات پایدار کننده و ... اضافه میشوند، تشکیل شده است.
خواص شیشههای بوروسیلیکات
این شیشهها دارای ضریب انبساطی پایین و مقاومت حرارتی زیاد میباشند. در نتیجه خطر شکستن آنها در هنگام گرم کردن یا سرد کردن ناگهانی کمتر است. مقاومت این شیشهها در تماس با مواد شیمیایی بسیار زیاد است و امکان خرابی سطح شیشه به مرور زمان کمتر است.
این شیشهها نسبت به شیشههای قلیایی سختتر بوده و در مقابل افزایش فشار سطحی مقاومت مکانیکی آنها بیشتر است. با توجه به این خواص ، در ساختن وسایلی که مقاومت در برابر حرارت و مواد شیمیایی مهم باشد، میتوان از این شیشهها استفاده نمود. اشیای شیشهای را میتوان با جداره نازکتر درست کرد. بدون اینکه در مقاومت حرارتی آن تاثیری داشته باشد.
معایب شیشههای بوروسیلیکات
این شیشهها گرانتر از شیشههای قلیایی هستند.
در اتصالات شیشههای بوروسیلیکات باقیماندن سوراخهای سوزنی شکل رایج است.
این شیشهها برای کار به دمای بالایی نیاز دارند. (http://iranchem.blogfa.com/)
تقسیم بندی انواع شیشهها بر اساس ترکیب شیمیایی و زمینه کاربرد آنها
1. شیشه معمولی : بیشترین تولید را این شیشهها به خود اختصاص میدهند. مصارف عمده آنها در شیشههای در و پنجره ، بطریها ، ظروف شیشهای ، لامپها و غیره است. ترکیب شیمیایی شیشه معمولی به شرح زیر است: (SiO2 70 درصد) ، (Na2O 15 درصد) ، (CaO 9 درصد)، (MgO 3 درصد) ، (Al2O3 2 درصد).
2. شیشههای بردار : در این شیشهها از بین B2O3 به جای CaO استفاده میشود. ویژگیهای مهم این شیشهها عبارت است از ضریب انبساط کم ، مقاومت شیمیایی و الکتریکی بالا و مقاومت در برابر شوکهای حرارتی. مصارف عمده این شیشهها در ساخت لوازم آزمایشگاهی ، پزشکی ، ظروف آشپزخانه و شیشههای صنعتی است. شیشه پیرکس نوعی شیشه بردار است. ترکیب شیمیایی شیشه بردار بدین شرح است. (SiO2 71- 81 درصد) ، (Na2O 5.4- 6 درصد) ، (B2O3 10- 5.13 درصد) ، (Al2O3 2- 5 درصد).
3. شیشههای سربی : ضریب شکست این شیشهها زیاد است و از اینرو آنها در ساخت انواع عدسی ، قطعات نوری و لامپ استفاده میشود. این شیشه حاوی 37 درصد اکسید سرب است که گاهی تا 92 درصد هم می رسد. شیشه های سربیای که میزان اکسید سرب آنها بیشتر باشد برای پیشگیری از نفوذ پرتوهای رادیواکتیو و تهیه لامپهای الکترونیک بکار میروند.
4. شیشههای کوارتزی : این شیشهها از کوارتز خالص ساخته میشوند. ایستایی گرمایی و شیمیایی آنها بالاست. ضریب انبساط آنها اندک است و بسیار شفاف هستند. این شیشهها در ساختن منشور و پنجرههای اپتیک بکار میروند.
5. سیلیکاتهای سدیم : این سیلیکاتها در آب محلولاند و به دلیل خاصیت چسبندگی شان به عنوان چسب بکار برده میشوند. ترکیب شیمیایی آنها به دو صورت Na2O.SiO2 و یا Na2O.4SiO2 است.
6. شیشههای فسفاتدار : در این شیشهها مقداری P2O5 جایگزین SiO2 شده است. از این شیشهها برای عبور امواج فرابنفش استفاده میشود.
7. شیشههای اوپالین : این شیشهها حاوی فلورین و آپاتیت هستند. ذوب شیشه عادی است، ولی به هنگام سرد شدن بلورهای کوچکی در آن متبلور میشوند. (http://iranchem.blogfa.com/)و بدین ترتیب خاصیت اوپالی در شیشهها ایجاد میگردد.
صنعت شیشه سازی :
بطور کلی در صنعت شیشه حداکثر دمای مورد نیاز برای ذوب مواد اولیه 1600 درجه سانتیگراد است. ترکیب بیشتر شیشهها در محدوده کوارتز ، کریستوبالیت و یا تریدیمیت قرار میگیرد. در صورتی که مواد اولیه با سیلیس بیشتر انتخاب شوند و یا این که کانیهای نا نقطه ذوب بالا در مواد اولیه موجود باشند، باید مواد تا 1600 درجه حرارت داده شوند. در دمای بالا با کاهش غلظت ، گاز CO2 به آسانی ماده مذاب را ترک کرده و ناخالصیها نیز ذوب میشوند و در نتیجه محصول شفاف و خالی از حباب و مواد ذوب نشده خواهد بود.
مراحل ساخت شیشه :
پس از مخلوط مواد خام اولیه آنها را درون کوره برای عملیات ذوب کردن منتقل می کنند.
1- ذوب مواد اولیه شیشه :
انواع کوره های مورد استفاده در صنعت شیشه سازی:
کوره تانکی
کوره ریکوپراتور
کوره ری جنراتور
2-عملیات كتينگ ـ Coating:
به برداشت پوشش از روي شيشه هاي رفلكتيو عملیات کتینگ می گویند
درشيشه هاي رفلكتيو،كه از لحاظ زيبايي و خواص نوري ويژه ميزان مصرف گسترده اي نسبت به ساير شيشه ها دارد،چسبندگي مواد درز گير به سطحي از شيشه كه پوشش آيينه اي (Coating)دارد،بسيار پايين است و در كوتاه مدت اين چسبندگي مواد درز گير به سطح قابل قبول رسيده و كيفيت عايق بودن شيشه ها در سطح استانداردباقي بماند.
3-شناور سازى مواد مذاب:
صنایع PPG از نوعی فرایند اصلاح شده فورکالت استفاده میکنند که Penn Vernon glass را تولید میکند. ورقهای شیشه به پهنای 3 متر و ضخامت حداکثر 0.55 سانتی متر ، ضمن تغییر سرعت کشش (از 96 سانتیمتر در دقیقه برای شیشههایی به ضخامت 2.2 تا 2.5 سانتیمتر در دقیقه برای شیشههایی به ضخامت 0.55 سانتیمتر ) تولید میشوند. در این فرایند ، یک میله کشش غوطهور برای هدایت ورق ، جانشین دیبتوز میشود.
4- تنش زدائى:
در این فرایند ، محفظه کشش با شیشه خروجی از مخزن پر میشود و شیشه پس از خروج از کوره با ماشین کشش از میان دیبتوز بصورت عمودی کشیده میشود. دیبتوز ، قایقی نسوز است که در مرکز آن شکافی وجود دارد و هنگامی که این قایق بطور نسبی در شیشه مذاب فرو میرود، شیشه بطور پیوسته بطرف بالا جریان مییابد. در همان زمانی که دیبتوز پایین برده میشود، یک قلاب فلزی پایین میآید و از طریق شکاف وارد شیشه مذاب شده ، همزمان با جریان یافتن شیشه شروع به کشیدن آن میکند.
5- برش:
شیشه به شکل نوار و با همان سرعتی که از شکاف بالا میآید، بطور پیوسته کشیده ، سطح آن بوسیله مارپیچهای مجاور که آب در آنها جریان دارد، خنک میشود. این نوار ، ضمن حرکت عمودی بوسیله چندین غلتک حمایت میشود و سپس از درون تابدان بطول 7.5 متر عبور میکند. شیشه پس از خروج از تابدان به ورقههایی با اندازه دلخواه بریده ، به مرحله درجهبندی و برش فرستاده میشود.
6- اطاق كنترل
تمامی عملیات فوق در اطاق کنترل و توسط مهندسین کنترل می شود .
شیشه گری در ایران :
امروزه با وجود آنکه کارخانه هاي بزرگ بلور سازي ، کريستال سازي در داخل و خارج کشور فرآورده هاي مختلفي توليد مي کنند با وجود اين محصولات شيشه اي ساخته شده به وسيله دست ، علاقمندان و خريداران بسياري دارد و علت آن تنوع و گوناگوني فوق العاده اي است که در اين گونه فرآورده ها مي توان يافت .
قسمت عمده اين گونه فرآورده ها از طريق سازمان صنايع دستي ايران به بازارهاي اروپا و آمريکا صادر مي شود .
ناگفته نماند که براي محصولات شيشه اي ساخت دست چه در داخل و چه در خارج کشور تقاضا بسيار زياد بوده و اغلب توليد جوابگوي آن نمي باشد .
به همين دليل فعاليت صنعتگران جديد در اين رشته و ازدياد توليد نه تنها به افزايش صادرات ايران کمک مي کند بلکه درآمد زيادي را نيز براي سازندگان و توليد کنندگان آن فراهم خواهد ساخت .
البته با صحبت هايي که بنده در اصفهان با يک توليد کننده داشتم ايشان در ضمن اينکه استادکار اين فن بودند فرمودند که بنده به صورت ماشيني و پرسي راحت تر و بيشتر توليد مي کنم و فروش بسيار خوبي هم دارم و الآن کار دستي براي درآمد سود زيادي ندارد . (http://iranchem.blogfa.com/)
سابقه شيشه گري در ايران
شيشه گري دستي يکي از قديمي ترين صنايعي است که بشر به آن اشتغال يافته است . قدمت اين صنعت به 2500 تا 3000 سال پيش از ميلاد مي رسد و احتمالا سازنده اولين اشيا شيشه اي مصريان بوده اند .
شيشه گري در ايران نيز سابقه اي بسيار طولاني دارد و از اين صنعت در مراحل اوليه براي ساختن اشيا و لوازم ساده استفاده مي کردند . يک گردن بند شيشه اي متعلق به 2250 سال پيش از ميلاد که داراي دانه هاي آبي رنگ است و در ناحيه شمال غرب ايران کشف شده ، قدمت اين صنعت را در ايران تاييد مي کند . در کاوش هاي باستان شناسي اخير نيز قطعات شيشه اي مايل به سبزي که متعلق به دوران پيش از تاريخ است در لرستان ، شوش و حسنلو به دست آمده است .
همچنين « ارستيوفانس » نويسنده نامدار يوناني که در قرن پنجم قبل از ميلاد مي زيسته ؛ در يکي از نمايشنامه هاي خود به جام هاي بلورين دربار هخامنشيان اشاره کرده است و قطعات شيشه اي کشف شده در تخت جمشيد نيز گفته او را تاييد مي کند .
شيشه گري دستي در ايران به علت عوامل مختلف اجتماعي در دوران مختلف فراز و نشيب هاي فراواني را پيموده است اما پيوسته حضور خود را در ميان صنايع دستي و به عنوان يکي از نمودهاي ارزنده ذوق و هنر ايراني حفظ کرده است .
روزگار سلجوقيان را مي بايست اوج صنعت شيشه گري در ايران به حساب آورد از آن جهت که در دوران سلطنت اين سلسله صنعتگران به شيوه هاي جديدي روي آوردند و استفاده از قالب هاي گوناگون را با نقوش برجسته و فرورفته رواج دادند و به اين ترتيب حک و تراش روي شيشه را نيز براي غذاي کارشان به خدمت گرفتند و در همين دوران است که نقاشي هاي گوناگون از قبيل گل هاي تزييني ، اشکال حيوانات و استفاده از اشعار و آيات قرآن با رنگ هاي متنوع به عنوان عاملي مکمل وارد شيشه گري دستي ايران مي شود . فرآورده هاي شيشه اي اين دوران بيشتر شامل ظروف کوچک و بزرگ ، عطردان هاي بسيار ظريف ، جام ها و گلدان هايي با فرم ها و اندازه هاي متنوع و اشياء تزييني کوچکي که به شکل حيوانات است .
اوضاع کنوني شيشه گري در ايران
در حال حاضر کارگاه هاي شيشه گري متعددي در تهران و بعضي شهرهاي ديگر مانند اصفهان ، ميمند فارس ، قمصر کاشان و ... داير است . اين کراگاه ها با شرايط کم و بيش همانندي به توليد شيشه هايي که به آن شيشه « فوتي » نيز گفته مي شود ؛ مشغولند . کارگاه هاي شيشه گري معمولا ساختماني همشکل دارند و داراي سقف هاي بلند و پنجره هاي بزرگ متقابل هستند . نحوه ساختمان اين کارگاه ها طوري است که باعث خروج هواي گرم ناشي از کار کردن کوره ها مي شود و هواي داخل کارگاه را متعادل و قابل تحمل نگاه مي دارد .
در هر کارگاه شيشه گري به طور معمول دو يا چند کوره اصلي وجود دارد . علت استفاده از چند کوره امکان استفاده از چند نوع شيشه مورد نياز را با رنگ هاي مختلف مقدور مي سازد. ماده اوليه اي که در اين کارگاه ها مورد استفاده قرار مي گيرد بيشتر ضايعات شيشه اي و شيشه خرده هايي است که از نقاط مختلف شهرها جمع آوري مي گردد . گاهي نيز از سيليس که ماده اصلي شيشه است استفاده مي شود و ترکيب آن با شيشه خرده مورد مصرف قرار مي گيرد .
درجه حرارت لازم براي ذوب سيليس 1827 درجه سانتي گراد است . اما در مواردي که مخلوط شيشه و سيليس مورد استفاده قرار گيرد به منظور پايين آوردن درجه ذوب ، مواد ديگري مانند کربنات براکس ، شوره ، نيترات و مواد قليايي ديگري به ماده اوليه افزوده مي شود .
(http://iranchem.blogfa.com/)عملیات شیشه گری :
شيوه تهيه رنگ
يکي از مهمترين عوامل در شيشه گري دستي نحوه ساخت رنگ هاي شيشه است . چرا که تنوع رنگ ها موجب زيبايي بيشتر فرآورده هاي شيشه اي مي شود و معمولا شيشه گران براي تهيه رنگ هاي مورد نياز از اکسيدهاي فلزات که به صورت پودر در بازار وجود دارد ، استفاده مي کنند . به طور مثال براي توليد رنگ آبي لاجوردي از اکسيد کبالت و براي تهيه رنگ آبي زنگاري از اکسيد مس و کرمات استفاده به عمل مي آيد . بي کرمات و اکسيد آهن براي تهيه رنگ سبز و اکسيد مس يک ظرفيتي يا سلينيوم براي به دست آوردن رنگ قرمز مورد استفاده قرار مي گيرد . همچنين استفاده از بي اکسيد منگنز به اضافه کبالت براي تهيه رنگ بنفش و بي اکسيد منگنز براي تهيه رنگ زرشکي مرسوم است . رنگ شيري نيز به وسيله نمک هاي فسفر يا فلوريد ها . (http://iranchem.blogfa.com/)رنگ قهوه اي از پيريت ، گوگرد و زغال چوب به دست مي آيد .
اين اکسيد ها به اندازه مورد نياز با خرده شيشه يا سيليس مي بايست مخلوط گردد و آنگاه جهت ذوب شدن به مدت هشت ساعت در داخل کوره اي با حرارت 1050 تا 1200 درجه سانتيگراد قرار گيرد . در صورتي که مقدار سيليس موجود در ماده اوليه زيادتر باشد به همان نسبت درجه حرارت بيشتري جهت ذوب لازم است .
کوره شيشه گري مي بايست در تمام مدت شبانه روز روشن باشد و شيشه را به حالت ذوب در درجه حرارت دلخواه نگاه دارد . چه در غير اين صورت به شيشه لطمه وارد خواهد شد .
ساخت اشياء شيشه اي از جمله هنرهايي است که احتياج به کارآيي و مهارت فوق العاده اي دارد و بيشتر دست اندرکاران اين صنعت کساني هستند که با سالها کار ، تجربه و مهارت لازم را کسب کرده اند .
اشيايي که معمولا توسط شيشه گران ايراني ساخته مي شوند مبتني بر طرح هايي است که طراحان سازمان صنايع دستي ايران با الهام از طرح هاي سنتي و اصيل ايراني خلق مي کنند ، ولي از آنجا که در حال حاضر توليدات شيشه اي علاوه بر جنبه تزييني موارد مصرف متعددي نيز يافته و فروش آن به بازارهاي جهاني رقم بزرگي از صنايع دستي ايران را تشکيل مي دهد ، طراحان سازمان صنايع دستي ايران مي کوشند طرح هايي جديد و ابتکاري را که برخوردار از ويژگي هاي هنر ايران باشد ، در اختيار صنعتگران قرار دهند .
ناگفته پيداست براي تهيه هر طرح مي بايست طراح قبلا از کارگاهي که قرار است طرح در آن پياده شود بازديد نموده و امکانات و مهارت فني استادکار مربوط را مورد سنجش قرار دهد تا بتواند با توجه به کارآيي استادکار طرحي را که وي قادر به اجراي آن باشد ، تهيه نمايد . طرح ها معمولا بر روي کاغذ به اندازه اصلي کشيده مي شود و براي پياده کردن نمونه اوليه ، طراح ملزم به حضور در کارگاه و راهنمايي استادکار مي باشد .
ابزار کار شيشه گري
ابزار کار شيشه گري دستي بسيار مختصر و ساده است . مهمترين وسيله اين صنعت لوله اي به طول 100 تا 120 سانتيمتر از فولاد با آلياژي مخصوص است که به آن « دم » گفته مي شود . اين لوله توخالي است و براي برداشتن شيشه از داخل کوره مورد استفاده قرار مي گيرد . طرز استفاده از آن نيز چنين است که شيشه گران آن را به داخل شيشه مذاب فرو مي برند و کمي آن را مي چرخانند . بعد از اينکه مقدار کمي از شيشه مذاب که اصطلاحا به آن « بار » گفته مي شود ، از داخل کوره برداشته شد ، در لوله مي دمند . به اين ترتيب گوي کوچکي که به آن « گوي اول » گفته مي شود ، به دست مي آيد . بعد از سرد و سخت شدن اين گوي مجددا « دم » را به داخل شيشه مذاب فرو برده و شيشه لازم را براي ساخت وسيله مورد نظر بر مي دارند .
گردي گوي اول به صنعتگر کمک مي کند تا مقدار شيشه اي که در مرحله دوم بر مي دارد در تمام نقاط داراي قطر مساوي بوده و شييي که ساخته مي شود در تمام نقاط قطر يکسان داشته باشد . ولي چون در اين مرحله غلظت شيشه مذاب براي فرم دادن کم است و از طرفي مي بايست داراي فرم و قطر مساوي باشد ، لوله دم را روي ميله اي که داراي سر دو شاخه است ، قرار مي دهند و در حالي که دم را به طور مرتب مي چرخانند ، آن را در داخل وسيله ديگري که « قاشق » نام دارد ، قرار مي دهند . قاشق عبارت است از چوب استوانه اي شکلي که هفت سانتي متر ارتفاع و ده تا پانزده سانتي متر قطر دارد و در يک سطح داراي فرورفتگي مي باشد و به ميله اي فلزي متصل است .
براي اينکه قاشق نسوزد و همچنين براي اينکه شيشه مذاب به قاشق نچسبد آن را هر چند دقيقه يکبار در داخل آب فرو مي برند و اصطلاحا به اين کار « قاشقي » کردن « بار » مي گويند .
پس از انجام اين عمل ، استادکار به اندازه دلخواه در لوله فولادي مي دمد و گوي گرد کره مانندي به وجود مي آورد . آنگاه پشت دستگاه مخصوص که عبارت از يک نيمکت و دو ميله افقي در اطراف است ، مي نشيند و دم را روي ميله هاي طرفين نيمکت قرار مي دهد و چون اين ميله ها به ارتفاع تقريبي 30 سانتي متر از سطح نشيمن نيمکت هستند،نتيجتا لوله دم به طور افقي در برابر استادکار قرار مي گيرد و در اين حالت دم را روي ميله ها مي غلطانند(براي پيش گيري از کج شدن بار به طرف پايين) و با انبر و تخته ، به فرم دادن آن مي پردازد .
انبري که معمولا براي فرم دادن بار مورد استفاده قرار مي گيرد ، داراي دو شاخه با مقطعي گرد است که سرشاخه ها به تدريج باريک مي شوند . تخته اي نيز که مورد استفاده قرار مي گيرد ، قطعه چوبي به اندازه تقريبي 7*20 سانتي متر است . براي استفاده از آن مي بايست بعد از هر بار استفاده در داخل آب فرو برده مي شود ، البته در بعضي از کارگاه ها استفاده از قالب نيز رايج است . استادکار بعد از قاشقي کردن بار آن را در داخل قالب قرار داده ، عمل دميدن را انجام مي دهد .
پس از اينکه شيء به حالت دلخواه در آمد ، کارگر وردست با لوله ديگري که به آن « واگيره » گفته مي شود ، به کمک استادکار مي آيد و استادکار به آرامي انتهاي وسيله ساخته شده را به واگيره که حاوي مقدار کمي شيشه مذاب است ، مي چسباند و آنگاه با قيچي خيس روي شيشه را خط مي اندازد و با ضربه ملايمي آن را از لوله اصلي جدا مي کند و شيء به واگيره منتقل مي شود .
بعد از انتقال به واگيره ، استادکار وسيله ساخته شده را مجددا به دهانه کوره نزديک مي کند و حرارت مي دهد تا دوباره نرم شده و دهانه آن قابل شکل گيري به نحو دلخواه باشد .
بعد از طي مرحله فرم دادن شيء شيشه اي تقريبا آماده است ولي چنانچه احتياج به پايه يا دسته يا تزيينات ديگر داشته باشد ، يکي از کارگران وردست به وسيله لوله فولادي ديگري مقدار کمي شيشه مذاب را از داخل کوره بر مي دارد . استادکار آن را به شيء ساخته شده مي چسباند و با تخته و انبر به فرم دادن آن مي پردازد .
آبگز کردن
آبگز کردن يکي از کارهاي تکميلي و جنبي شيشه گري است . اين کار در زيباسازي فرآورده هاي شيشه اي اهميت فوق العاده اي دارد و موجب زيبايي وسايل شيشه اي مي شود .
براي آبگز کردن وسايل شيشه اي ، پس از تکميل و قبل از اينکه کاملا سرد شود آن را به مدت چند ثانيه در داخل آب سرد فرو برده و بيرون مي آورند .
انجام اين کار موجب منقبض شدن سريع پوسته رويي شيشه مي شود و در آن صدها شکستگي کوچک به وجود مي آيد ولي چون هنوز داخل شيشه گرم است ، شيشه به طور کامل نمي شکند و فقط سطح آن ترک برمي دارد .
استادکاران معمولا براي استحکام بيشتر وسايل آبگز شده و پيش گيري از شکست هاي احتمالي بعدي پس از آبگز کردن وسيله شيشه اي مجددا آن را مدتي جلوي کوره نگاه داشته و حرارت مي دهند .
تلفيق با فلز
تلفيق ظروف شيشه اي با فلز يکي از شيوه هايي است که پاره اي از شيشه گران به منظور ايجاد تنوع از آن بهره اي مي گيرند . اين کار معمولا در مورد ليوان ، گلدان و ساير اشيايي که قسمت اصلي آن استوانه اي شکل است ، اعمال مي شود . به اين ترتيب که قبلا استوانه اي فلزي از مس يا برنج با قطر و ارتفاع دلخواه و توام با نقش هاي مشبک توسط استادان فلزکار ساخته مي شود . شيشه گر براي تلفيق شيشه و فلز بعد از آماده شدن گوي شيشه ، آن را در داخل اين استوانه قرار داده و در آن مي دمد . شيشه در اثر دميدن منبسط شده و حجم داخل استوانه فلزي را پر مي کند . کمي نيز از ميان شبکه هاي روي فلز به خارج نفوذ مي کند و اين امر باعث مي شود که شيشه بعد از منقبض شدن از فلز جدا نشود .
گرم خانه
اشياء شيشه اي چنانچه در مجاورت هواي عادي نگه داشته شوند ، پس از چند دقيقه به علت سرد شدن سطح شيشه و گرم بودن درون آن مي شکند . به اين جهت بايد اشياء ساخته شده به تدريج و در مدتي طولاني سرد شوند . براي اين منظور در هر کارگاه ، گرم خانه هايي با درجه حرارت 450 تا 550 درجه سانتي گراد وجود دارد . معمولا در هر کارگاه ، گرم خانه ها را اول وقت هر روز روشن مي کنند و هنگامي که حرارت داخل آن به ميزان دلخواه رسيد ، اشياء ساخته شده را درون آن قرار مي دهند و هنگام تعطيل کارگاه ، در گرم خانه را بسته و موتور آن را خامشو مي کنند . به اين ترتيب اشياء ساخته شده مدت 24 تا 48 ساعت در گرم خانه مي مانند تا حرارت داخل گرم خانه به تدريج پايين آمده و به درجه حرارت هواي معمولي نزديک شود .
براي امکان در اختيار داشتن گرم خانه در تمام ساعات کار ، ايجاد چند گرم خانه در هر کارگاه ضروري است تا هميشه يک گرم خانه براي اشياء توليدي روزانه آماده باشد .
استادکار ، اشياء ساخته شده را به داخل گرم خانه مي برد و با ضربه اي که به لوله « واگيره » مي زند ، آن را جدا کرده و شيء را به آرامي روي خاک نرم کف گرم خانه مي اندازد .
در قسمت جلوي گرم خانه کارگري که مسئول گرم خانه است ، با ميله دو شاخه اي اشياء داخل گرم خانه را جا به جا مي کند و به طور مرتب روي هم مي چيند تا امکان حداکثر استفاده از فضاي داخل گرم خانه مقدور باشد .
اشيايي که از گرم خانه خارج مي شوند شيشه هايي شفاف و کامل هستند . در صورتي که نيازي به نقاشي ، مات شدن و تراش خوردن آن نباشد آماده عرضه به بازار هستند .
مات کردن شيشه
بسياري از فرآورده هاي شيشه اي که در بازار عرضه مي شوند ، ظاهري مات و غير شفاف دارند . شيشه يکي از اجسامي است که در برابر اکثر مواد شيميايي مقاوم است . براي مات کردن شيشه مي بايست از اسيدي که بتواند قسمتي از سطح شيشه را در خود حل کند ، استفاده شود .
تنها اسيدي که شيشه در برابر آن مقاومت ندارد اسيد فلوريدريک است . اما کار کردن با اين اسيد نيز علاوه بر آنکه مشکل است ، خطرناک نيز هست و گذشته از اين به علت گراني قيمت مصرفش ، مقرون به صرفه نمي باشد . به همين جهت در بيشتر کارگاه هاي شيشه گري از محلول ( آمونيوم هيدروژن فلوريد ) يا مواد مشابه ديگر ، براي مات کردن شيشه استفاده مي کنند .
براي مات کردن شيشه وسايل شيشه اي را به مدت چند دقيقه در محلول قرار داده و سپس خارج مي کنند و با آب مي شويند . اگر سطح شيشه هاي مات شده را زير ميکروسکوپ نگاه کنيم ، ناهمواري هاي فراواني را بر روي آن ها مشاهده خواهيم کرد .
(http://iranchem.blogfa.com/)نقاشي روي شيشه
يکي از عوامل فزاينده زيبايي فرآورده هاي شيشه اي ، نقاشي روي آن است .
رنگ هايي که معمولا براي نقاشي روي شيشه به کار مي رود ، اکسيدهاي فلزات مختلف به صورت پودر است که با تربانتين و روغن مخصوصي مخلوط و ساييده مي شود . بعد از اينکه مخلوط ، غلظت لازم را به دست آورد ، نقاشان با آن به تزيين شيشه و نقاشي روي آن مي پردازند . مرحله بعد از نقاشي روي شيشه مرحله ثابت کردن رنگ ها است . به منظور ثابت کردن رنگ اشياء نقاشي شده ، آنها را به مدت 2 تا 4 ساعت در کوره اي با دماي 500 تا 600 درجه سانتي گراد قرار مي دهند . سپس کوره را خاموش کرده و بعد از سرد شدن کامل کوره ، اشياء را از آن خارج مي کنند .
تراش دادن شيشه
بسياري از فرآورده هاي شيشه اي دست ساخت با نقوشي به صورت تراش به دست خريدار مي رسد .
براي تراش دادن اين گونه وسايل از سنگ هاي مخصوصي که درجه سختي آنها بيش از سختي شيشه است ، استفاده مي شود .
تراش دادن وسايل شيشه اي به وسيله سنگ هاي ديسک مانندي که با سرعت لازم قادر به چرخش هستند ، انجام مي شوند . سرعت چرخ هاي تراش و ديسک تراش کاري بستگي مستقيم به نوع تراش دارد و هر چه ميزان عمق تراش مورد نظر بيشتر باشد ، سرعت چرخ تراش نيز بيشتر است و بالعکس در صورتي که تراش سطحي باشد ، سرعت چرخ تراش کاري کمتر است .
صنعت گران تراش کار نخست محل هايي را که مي بايست تراش بخورد ، مشخص نموده و سپس با نگه داشتن ظرف شيشه اي در دست و نزديک کردن آن به سنگ تراش ، نقوش دلخواه را روي شيشه حک مي کنند . پس از تراش نقاط تراش خورده را صيقل مي دهند .
کاربردهای شیشه :
شیشه سیلیس گداخته
شیشه سیلیسی گداخته یا سیلیس شیشهای را میتوان با گداختن سیلیس خالص تولید کرد، اما چنین محصولاتی معمولا حباب دارند و نمیتوان آنها را بهصورت شفاف تولید کرد. اکنون کمپانی کورنینگ ، این شیشه را به روش تفکافت فاز بخار تتراکلرید سیلیسیم در دمای بالا تولید میکند. این نوع فرایند ، بطور طبیعی برای کنترل سیستمهایی مناسب است که در آنها امکان تولید خالص فراهم باشد.
سیلیس خامی که با این روش تولید میشود، به شکل ورق یا بول (بول ، خرده سنگهای استوانهای یا گلابی شکل کانی مصنوعی است) است. دمای بالای واکنش ، باعث بیرون رانده شدن آلایندههای نامطلوب میشود و مقدار ناخالصیهای موجود در سیلیس گداخته را به حدود یک در صد میلیون قسمت میرساند. شیشه سیلیس گداخته ، حداقل مقدار جذب فراصوت را داراست. از این شیشه بدلیل انبساط گرمایی کم آن در آینههای تلسکوپی استفاده میشود.
شیشه پر سیلیس
این محصول که به نام ویکور شناخته میشود، پیشرفت مهمی درجهت تولید شیشهای است که از نظر ترکیب و خواص به شیشه سیلیس گداخته نزدیک است. در این روش ، محدودیتهای پیشین در زمینه ذوب و شکلدهی از میان رفته است. کالاهای نهایی ، حدود 96% سیلیس و 3% اسید بوریک دارد و 1% بقیه از آلومین و قلیا تشکیل شده است. از ترکیبات بورو سیلیکات-شیشه حاوی حدود 75% سیلیس ، در مراحل اولیه فرایند هنگامی که شیشهها ذوب و قالبگیری میشوند، استفاده میشود. پس از خنک شدن ، کالاها را تحت عملیات گرمایی و تابکاری قرار میدهند که سبب جدا شدن شیشه به دو فاز فیزیکی متمایز میشود. کالای شیشهای را در حمام محلول اسید هیدرو کلریک 10% (98C) به مدت کافی فرو میبرند تا فاز انحلالپذیر ، کاملا از آن خارج شود.
سپس با شستشوی کامل ، کمترین مقدار باقیمانده از فاز انحلالپذیر و همچنین ناخالصیها شسته میشوند و سپس تحت عملیات گرمایی از بدنه ، آبزدایی شده و ساختارسلولی به شیشه غیر متخلخل تبدیل میشود. این روش از تولید شیشه ، سبب ساخت محصولی میشود که میتوان آن را تا حرارت قرمز آلبالویی ، گرم کرده ، سپس بدون ایجاد هیچگونه آثار نامطلوب ، آن را درمخلوط آب و یخ فرو برد. این شیشه در برابر مواد شیمیایی نیز بسیار مقاوم و در برابر تمام اسیدها به جز اسید هیدرو فلوئوریک بسیار پایدار است. البته این اسید (درمقایسه با سایر شیشهها) با سرعت کمتری به این شیشه حمله میکند. در ضمن ، انقباض این شیشه به نسبت یکنواخت و مساوی صورت میگیرد، بطوری که شکل اولیه همچنان حفظ میشود. (http://iranchem.blogfa.com/)
شیشه رنگی
هر چند قرنها از این شیشهها تنها برای تزئین استفاده میشد، امروزه استفاده از شیشههای رنگی برای مقاصد صنعتی و علمی ضروری است. این شیشهها ، در صدها رنگ مختلف تولید میشوند. شیشه رنگی ممکن است یکی از انواع سهگانه زیر باشد:
رنگ شیشه براثر جذب فرکانس خاصی از نور ، توسط عوامل موجود در محلول بوجود میآید. عوامل ایجاد رنگ در این گروه ، اکسیدهای عناصر واسطه بویژه گروه اول هستند (مانند Cr , V , Ti ). این طبقه را میتوان به دو زیر گروه تقسیم کرد، یکی شیشههایی که رنگ آنها ، بدلیل محیط ساختاری شیمیایی آنهاست و دیگری شیشههایی که رنگ آنها به دلیل اختلاف در حالت اکسایش آنهاست. مثلا NiO حل شده در شیشه سدیمی _ سربی است که رنگ قهوهای ایجاد میکند. اما این ترکیب در شیشه پتاسی تولید یک سرخ ژاسپ میکند.
رنگ بر اثر ترسیب ذرات کلوئیدی در شیشه بیرنگ ، ضمن انجام عملیات گرمایی بوجود میآید. مثال معمول این نمونه ، ترسیب طلایی کلوئیدی است که شیشه طلایی _ یاقوتی پدید میآورد.
رنگ بوسیله ذرات میکروسکوپی یا ذرات بزرگتر که ممکن است خود رنگی باشند، بوجود میآید. مانند قرمز سلنیمی که در چراغهای راهنمایی ، حباب فانوسها و غیره بکار میرود. البته ممکن است این ذرات ، بیرنگ باشند و شیشه نیمهشفاف تولید کنند.
شیشههای پوشش دار
این شیشهها با ترسیب فیلمهای فلزی شفاف بر روی سطح شیشه شفاف یا رنگی تولید میشوند. این فیلمها طوری طراحی میشوند که مشخصات عبور و بازتابش خاصی از نور را که در معماری امروز دارای اهمیت است، ایجاد کنند.
شیشههای مات یا نیمه شفاف
این شیشهها در حالت مذاب ، شفافاند. اما هنگام شکل دهی به دلیل جدایی و تعلیق ذرات ریز در محیط شیشه ، کدر میشوند. این ذرات از نظر اندازه و چگالی در شیشه ، انواع متفاوتی دارند و نور را به هنگام عبور ، پخش میکنند. شیشه مات ، اغلب از شیشه شفاف حاوی نقره بدست میآید. این ذرات نقره در واقع نقش هسته را برای رشد بلورهای غیر فلزی ایفا میکنند. این نوع شیشه برای ایجاد برخی سبکهای معماری مثلا در پنجره نورگیرها به منظور عبور طول موج مشخصی از نور و برای ظروف غذا خوری بکار میرود. (http://iranchem.blogfa.com/)
شیشه ایمنی
شیشههای ایمنی در دو نوع چندلایی و با پوشش سخت میباشند و شیشه نشکن را نیز میتوان شیشه ایمنی به حساب آورد. این شیشهها بهآسانی شیشه معمولی نمیشکنند و ظروف غذا خوری ساخته شده از اینها ، در مقایسه با ظروف غذا خوری معمولی سبکتر و سه برابر محکمترند.
شیشه فوتوفرم
شیشه فوتو فرم ، نسبت به نور ، حساس است و عمدتا از سیلیکات لیتیم تشکیل یافته است. اکسید پتاسیم و اکسید آلومینیوم موجود در این شیشه ، خواص آن را اصلاح میکند و مقادیر بسیار کم ترکیبات سریم و نقره ، اجزایی هستند که نسبت به نور ، حساساند. بر اثر تاباندن نور فرابنفش به این شیشه ، نقره توسط سریم حساس میشود و با انجام عملیات گرمایی در دمایی نزدیک به 600درجه سانتیگراد در اطراف آن ، تصویری از متاسیلیکات لیتیم ایجاد میشود.
متاسیلیکات لیتیم در اسید حل میشود. لذا میتوان آن را به کمک اسید هیدروفلوئوریک 10% حذف کرد. اگر نور پس از عبور از نگاتیو یک نقشه شیشه ، تابانیده شود، یک کپی بسیار دقیق با تمام جزئیات و ریزه کاریها بر روی شیشه بدست میآید. مثلا به همین روش میتوان نقشه مدارهای الکتریکی شیشهای را به ارزانی و به شکل دقیقی تولید کرد. این فرایند ، ماشینکاری شیمیایی شیشه نامیده شده است.
شیشه فوتوکرومیک سیلیکاتی
این نوع شیشهها مکمل شیشه فوتوفرم هستند، اما در عین حال خواص نامعلوم زیر را نیز دارند:
تیره شدن در نور بر اثر وجود نور فرابنفش درطیف مرئی
بیرنگ شدن یا کمرنگ شدن در تاریکی و بیرنگ شدن گرمایی در دماهای بالاتر.
این خواص نور رنگی واقعا برگشت پذیرند و دچار خستگی نمیشوند. در این شیشه ، ذرات هالید نقره در اندازههایی کمتر از یک میکرون موجودند که در مقایسه با هالید نقره معمولی عکاسی ، واکنش متفاوتی را در برابر نور از خود نشان میدهند. این ذرات را در شیشه صلب و نفوذناپذیری که از نظر شیمیایی بیاثر است، جای میدهند. بدین ترتیب ، مراکز رنگی که محل نورکافت هستند، نمیتوانند از مکان خود به جای دیگر نفوذ کنند و ذرات پایدار نقره را تشکیل دهند و ترکیب برگشت ناپذیر تولید کنند.
شیشه - سرامیک
این ماده ، مادهای است که مانند شیشه ، ذوب و شکل داده میشود و سپس بوسیله فرایندهای واشیشهای شدن کنترل شده ، تا حد زیادی به سرامیک بلورین تبدیل میشود. از این مواد ، در ساخت پوشش آنتن رادار هواپیما ، موشکهای هدایت شونده و وسایل الکترونیکی مختلف استفاده میشود. همچنین این مواد تحت نام تجاری پیرو سرام در تولید ظروف آشپزخانه که همزمان برای هر سه کار پخت ، پذیرایی و انجماد غذا استفاده میشوند، بکار میروند.
الیاف شیشه
اگرچه الیاف شیشه ، محصول جدیدی نیست، با این حال سودمندی آن بدلیل ظرافت فوقالعادهاش افزایش یافته است. میتوان این ماده را به صورت رشته کشید، یا آنکه برای تولید عایق ، نوار و صافیهای هوا میتوان آن را به روش دمشی به شکل شبکه حصیری در آورد. الیاف کشیده شده برای تقویت پلاستیکهای مختلف بکار میروند و محصول چند سازه حاصل در ساخت لوله ، مخزن و وسایل ورزشی نظیر چوب ماهیگیری و چوب اسکی استفاده میشوند. متداولترین رزینهایی که با الیاف شیشه مصرف میشوند، رزینهای اپوکسی و پلی استر هستند. (http://iranchem.blogfa.com/)
بازیافت شیشه :
بازيافت شيشه چهار هزار سال قابل از ميلاد مسيح، شيشه به صورت يک لعاب آبگونه تزييني در خاور ميانه استفاده مي شد. ظرف هاي شيشه اي رنگي براي خوردن و آشاميدن از سال 1550 گسترش يافته و مورد استفاده قرار گرفته است. قديمي ترين شيشه صاف و شفاف، يک گلدان ريخته گري شده در نينواي آشور است که در حدود 800 سال قبل از ميلاد توليد شد و اکنون در موزه British لندن قرار دارد. در قرون هجدهم و نوزدهم شيشه بسيار گران بود و براي کاربردهاي محدود همانند توليد پنجره هاي شيشه اي رنگي کليسا استفاده مي شد.
در ابتداي قرن بيستم با انقلاب صنعتي توليد شيشه با مقياس بزرگي آغاز گرديد. براي مثال توليد لامپ سبک شيشه اي ماشين در سال 1926 آغاز شد. امروزه شيشه ماده گران بهايي به شمار نمي رود و براي بسته بندي مواد، توليد پنجره و ساير محصولات استفاده مي شود. شيشه هاي جديد از چهار ترکيب شن، خاکستر سودا( کربنات سديم)، سنگ آهک و ساير افزودني ها ساخته مي شود. اين افزودني ها شامل آهن در رنگ (قهوه اي يا سبز)، کروميوم(فلز درخشان)، فلز لاجورد در رنگ سبز مايل به آبي، آلومينا براي دوام و برم براي بهبود عمليات حرارتي به آن افزوده مي گردد.
سالانه تمامي شيشه استفاده شده در اروپا در حدود 6/11ميليون تن تخمين زده مي شود. صنعت شيشه در انگلستان با به کارگيري تکنولوژي بالا ظرفيت بازيافت خود را به بالاي يک ميليون تن در سال رسانيده است. وابستگي مواد ديگر و قابليت غيرقابل انکار شيشه، با توجه به تمامي مشکلات، بازيافت آن يک مساله اجباري و اضطراري مي باشد. 7 درصد شيشه ها به طور ميانگين از زباله هاي خانگي توليد مي شود، به طوري که در سال 2001 بيش از 5/2 ميليون تن از اين مواد سوزانده شده است.
براي ساخت شيشه انرژي زيادي در استخراج و حمل و نقل مواد صرف مي شود. در اين فرآيند ترکيب مواد را بايد در دماي بسيار بالا انجام داد و حجم بالاي سوخت فسيلي استفاده شده در آن دي اکسيد کربن و گازهاي گلخانه اي بسياري توليد مي کند. به طور مثال در سال 2002 در صنعت شيشه انگلستان در حدود 8611000000 کيلووات ساعت برق مصرف شد و 8/1 ميليون تن دي اکسيد کربن از سوخت فسيلي در کارخانه ها توليد گرديد. يک کوره کارآمد حدود 4 گيگا ژول برق براي گداختن يک تن شيشه لازم دارد.
شيشه را مي توان به عنوان يک ماده ساده بازيافت نمود و ساختار آن در گونه هاي مختلف بازيافت از بين نمي رود و اين بسيار مهم است. در مورد توليد بطري هاي شيشه اي مي توان گفت که 80 درصد از کل شيشه مصرف شده بازيافتي است که Cullet ناميده مي شود. Cullet که همان خرده شيشه است، ساختار شناخت شده اي براي کارخانه ها دارد و به صورت خرده شيشه بومي شناخته مي شود. نمودار اگر شيشه بازيافتي براي ساخت بطري و جارها استفاده شود، انرژي لازم براي کوره ها کاهش مي يابد. علاوه بر حمل و نقل و مراحل توليد، حدود 315 کيلوگرم از توليد CO2 در هر تن شيشه ذوب شده کاهش يافته است. (http://iranchem.blogfa.com/)
از بازيافت دو بطري شيشه اي انرژي لازم براي جوش آمدن آب براي 5 فنجان چاي توليد مي شود. بازيافت، تقاضاي بازار براي مواد اوليه را کاهش مي دهد. اين مساله استفاده از مواد را کم نمي کند اما هزينه خاک برداري را کاهش مي دهد و اگر از منظر ديگري به آن توجه کنيم، فوايد استفاده مجدد و بازيافت به محيط زيست مرتبط مي شود. براي بازيافت هر تن شيشه حدود 2/1 تن از مواد اوليه صرفه جويي مي شود. بازيافت موجب کاهش ضايعات شيشه در کره زمين مي شود. هر چند شيشه مستقيما سلامت زمين را تهديد نمي کند و مي توان آن را به مدت نامحدودي ذخيره نمود.
vBulletin v4.2.5, Copyright ©2000-2025, Jelsoft Enterprises Ltd.